Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review

根际 抗性(生态学) 生物 非生物成分 微生物种群生物学 生态学 生物逆境 生化工程 非生物胁迫 环境科学 细菌 工程类 遗传学 生物化学 基因
作者
Jiaqi Ge,Dong Li,Jixiang Ding,Xian Xiao,Yuting Liang
出处
期刊:Environmental Research [Elsevier]
卷期号:222: 115298-115298 被引量:33
标识
DOI:10.1016/j.envres.2023.115298
摘要

Plants can recruit soil microorganisms into the rhizosphere when experiencing various environmental stresses, including biotic (e.g., insect pests) and abiotic (e.g., heavy metal pollution, droughts, floods, and salinity) stresses. However, species coexistence in plant resistance has not received sufficient attention. Current research on microbial coexistence is only at the community scale, and there is a limited understanding of the interaction patterns between species, especially microbe‒microbe interactions. The relevant interaction patterns are limited to a few model strains. The coexisting microbial communities form a stable system involving complex nutritional competition, metabolic exchange, and even interdependent interactions. This pattern of coexistence can ultimately enhance plant stress tolerance. Hence, a systematic understanding of the coexistence pattern of rhizosphere microorganisms under stress is essential for the precise development and utilization of synthetic microbial communities and the achievement of efficient ecological control. Here, we integrated current analytical methods and introduced several new experimental methods to elucidate rhizosphere microbial coexistence patterns. Some advancements (e.g., network analysis, coculture experiments, and synthetic communities) that can be applied to plant stress resistance are also updated. This review aims to summarize the key role and potential application prospects of microbial coexistence in the resistance of plants to environmental stresses. Our suggestions, enhancing plant resistance with coexisting microbes, would allow us to gain further knowledge on plant–microbial and microbial-microbial functions, and facilitate translation to more effective measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll应助喝水变瘦采纳,获得10
2秒前
在水一方应助丹丹采纳,获得10
2秒前
3秒前
星辰大海应助小南采纳,获得10
3秒前
张光光发布了新的文献求助10
4秒前
顾矜应助nly采纳,获得10
4秒前
善学以致用应助123采纳,获得10
4秒前
1257应助Lixueyu采纳,获得10
4秒前
斯文败类应助潇潇雨歇采纳,获得10
5秒前
彭于晏应助monned采纳,获得10
5秒前
5秒前
邱志鸿完成签到,获得积分10
6秒前
7秒前
7秒前
白石溪发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
意识流发布了新的文献求助10
12秒前
13秒前
歪歪发布了新的文献求助10
13秒前
烟花应助fujun0095采纳,获得10
13秒前
yang完成签到,获得积分10
14秒前
14秒前
mj完成签到,获得积分10
15秒前
16秒前
17秒前
野火烧发布了新的文献求助200
17秒前
ggyybb完成签到 ,获得积分10
18秒前
充电宝应助小四喜采纳,获得10
18秒前
maoa完成签到,获得积分10
20秒前
丹丹发布了新的文献求助10
20秒前
icebala发布了新的文献求助10
20秒前
21秒前
小马完成签到 ,获得积分10
21秒前
21秒前
21秒前
Banila发布了新的文献求助10
21秒前
bobopoi应助周凡淇采纳,获得10
22秒前
sun发布了新的文献求助10
26秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Angio-based 3DStent for evaluation of stent expansion 500
Populist Discourse: Recasting Populism Research 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2993292
求助须知:如何正确求助?哪些是违规求助? 2653998
关于积分的说明 7178329
捐赠科研通 2289100
什么是DOI,文献DOI怎么找? 1213452
版权声明 592683
科研通“疑难数据库(出版商)”最低求助积分说明 592342