亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network

聚类分析 计算机科学 人工智能 自编码 降维 模式识别(心理学) 特征学习 可扩展性 成对比较 深度学习 数据挖掘 机器学习 数据库
作者
Jing Wang,Junfeng Xia,Haiyun Wang,Yansen Su,Chun-Hou Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:6
标识
DOI:10.1093/bib/bbac625
摘要

The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江任意西完成签到 ,获得积分10
3秒前
lensray完成签到,获得积分10
30秒前
我是老大应助科研通管家采纳,获得20
30秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
学术小白完成签到,获得积分10
34秒前
深情安青应助Forizix采纳,获得10
45秒前
1分钟前
Forizix完成签到,获得积分10
1分钟前
Forizix发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
乐生发布了新的文献求助50
1分钟前
CodeCraft应助泡面小猪采纳,获得10
1分钟前
科研通AI2S应助活力鸿采纳,获得10
1分钟前
我是老大应助乐生采纳,获得10
1分钟前
1分钟前
百里盼山发布了新的文献求助10
1分钟前
百里盼山完成签到,获得积分20
1分钟前
执着夏山完成签到,获得积分10
2分钟前
Jonas完成签到,获得积分10
2分钟前
2分钟前
泡面小猪发布了新的文献求助10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
2分钟前
foxmail.com完成签到,获得积分10
2分钟前
foxmail.com发布了新的文献求助10
3分钟前
3分钟前
乐生发布了新的文献求助10
3分钟前
乐生完成签到,获得积分10
3分钟前
温暖的盼山应助乐生采纳,获得10
3分钟前
ww发布了新的文献求助20
4分钟前
4分钟前
医路通行发布了新的文献求助20
5分钟前
Esperanza完成签到,获得积分10
5分钟前
chunjianghua完成签到,获得积分10
5分钟前
chunjianghua发布了新的文献求助10
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299638
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989