卤化物
锂(药物)
电化学
单斜晶系
三元运算
离子电导率
化学
热稳定性
离子
电导率
碘化物
无机化学
极化率
电解质
离子键合
结晶学
材料科学
物理化学
晶体结构
有机化学
分子
内分泌学
医学
计算机科学
程序设计语言
电极
作者
Nicolás Flores-González,Nicolò Minafra,Georg F. Dewald,Hazel Reardon,Ronald I. Smith,Stefan Adams,Wolfgang G. Zeier,Duncan H. Gregory
出处
期刊:ACS materials letters
[American Chemical Society]
日期:2021-04-20
卷期号:3 (5): 652-657
被引量:32
标识
DOI:10.1021/acsmaterialslett.1c00055
摘要
State-of-the-art oxides and sulfides with high Li-ion conductivity and good electrochemical stability are among the most promising candidates for solid-state electrolytes in secondary batteries. Yet emerging halides offer promising alternatives because of their intrinsic low Li+ migration energy barriers, high electrochemical oxidative stability, and beneficial mechanical properties. Mechanochemical synthesis has enabled the characterization of LiAlX4 compounds to be extended and the iodide, LiAlI4, to be synthesized for the first time (monoclinic P21/c, Z = 4; a = 8.0846(1) Å; b = 7.4369(1) Å; c = 14.8890(2) Å; β = 93.0457(8)°). Of the tetrahaloaluminates, LiAlBr4 exhibited the highest ionic conductivity at room temperature (0.033 mS cm–1), while LiAlCl4 showed a conductivity of 0.17 mS cm–1 at 333 K, coupled with the highest thermal and oxidative stability. Modeling of the diffusion pathways suggests that the Li-ion transport mechanism in each tetrahaloaluminate is closely related and mediated by both halide polarizability and concerted complex anion motions.
科研通智能强力驱动
Strongly Powered by AbleSci AI