纳米颗粒
纳米毒理学
生物物理学
化学
食物蛋白
纳米材料
体内
纳米技术
日冕(行星地质学)
材料科学
生物化学
生物
生物技术
天体生物学
维纳斯
作者
Guoxin Cui,Wentao Su,Mingqian Tan
标识
DOI:10.1111/1541-4337.12838
摘要
The rapid development of nanoscience and nanoengineering provides new perspectives on the composition of food materials, and has great potential for food biology research and applications. The use of nanoparticle additives and the discovery of endogenous nanoparticles in food make it important to elucidate in vivo safety of nanomaterials. Nanoparticles will spontaneously adsorb proteins during transporting in blood and a protein corona can be formed on the nanoparticle surface inside the human body. Protein corona affects the physicochemical properties of nanoparticles and the structure and function of proteins, which in turn affects a series of biological reactions. This article reviewed basic information about protein corona of food-related nanoparticles, elucidated the influence of protein corona on nanoparticles properties and protein structure and function, and discussed the effect of protein corona on nanoparticles in vivo. The effects of protein corona on nanoparticles transport, cellular uptake, cytotoxicity, and immune response were reviewed, and the reasons for these effects were also discussed. Finally, future research perspectives for food protein corona were proposed. Protein corona gives food nanoparticles a new identity, which makes proteins bound to nanoparticles undergo structural transformations that affect their recognition by receptors in vivo. It can have positive or negative impacts on cellular uptake and toxicity of nanoparticles and even trigger immune responses. Understanding the effects of protein corona have potential in evaluating the fate of the food-related nanoparticles, providing physicochemical and biological information about the interaction between proteins and foodborne nanoparticles. The review article will help to evaluate the safety of protein coronas formed on nanoparticles in food, and may provide fundamental information for understanding and controlling nanotoxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI