Instance-Aware Deep Graph Learning for Multi-Label Classification

计算机科学 模式识别(心理学) 推论 卷积神经网络 人工智能 多标签分类 相关性 机器学习 上下文图像分类 图像(数学) 图形 数据挖掘 数学 理论计算机科学 几何学
作者
Yun Wang,Tong Zhang,Chuanwei Zhou,Zhen Cui,Jian Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 90-99 被引量:1
标识
DOI:10.1109/tmm.2021.3121559
摘要

Graph convolutional neural network (GCN) has effectively boosted the multi-label image recognition task by modeling correlation among labels. In previous methods, label correlation is computed based on statistical information through label diffusion, and therefore the same for all samples. This, however, makes graph inference on labels insufficient to handle huge variations among numerous image instances. In this paper, we propose an instance-aware graph convolutional neural network (IA_GCN) framework for the multi-label classification. As a whole, two fused branches of sub-networks are involved in the framework: a global branch modeling the whole image and a local branch exploring dependencies among regions of interests (ROIs). For both the branches, an image-dependent label correlation matrix (ID_LCM), fusing both the statistical label correlation matrix (LCM) and an individual one of each image instance, is constructed to inject adaptive information of label-awareness into the learned features of the model through graph convolution. Specifically, the individual LCM of each image is obtained by mining the label dependencies based on the predicted label scores of those detected ROIs. In this process, considering the contribution differences of ROIs to multi-label classification, variational inference is introduced to learn adaptive scaling factors for those ROIs by considering their complex distribution. Finally, extensive experiments on MS-COCO and VOC datasets show that our proposed approach outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助应天亦采纳,获得30
刚刚
刚刚
火星上藏鸟完成签到,获得积分10
刚刚
刚刚
wangxuan完成签到,获得积分10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
2秒前
缓慢如南应助科研通管家采纳,获得10
2秒前
缓慢如南应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
缓慢如南应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
古往今来应助科研通管家采纳,获得20
3秒前
ding应助科研通管家采纳,获得50
3秒前
李健应助科研通管家采纳,获得30
3秒前
F503完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
哆啦豆豆关注了科研通微信公众号
3秒前
语青发布了新的文献求助10
4秒前
好好工作完成签到,获得积分20
4秒前
星星完成签到,获得积分10
5秒前
嘿嘿嘿发布了新的文献求助10
5秒前
小徐801完成签到,获得积分10
5秒前
吴向宽发布了新的文献求助10
5秒前
maz123456发布了新的文献求助10
5秒前
5秒前
CodeCraft应助乐观若烟采纳,获得30
5秒前
N型半导体发布了新的文献求助10
5秒前
erhan7发布了新的文献求助10
5秒前
6秒前
华仔应助CC采纳,获得10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582