Instance-Aware Deep Graph Learning for Multi-Label Classification

计算机科学 模式识别(心理学) 推论 卷积神经网络 人工智能 多标签分类 相关性 机器学习 上下文图像分类 图像(数学) 图形 数据挖掘 数学 理论计算机科学 几何学
作者
Yun Wang,Tong Zhang,Chuanwei Zhou,Zhen Cui,Jian Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 90-99 被引量:1
标识
DOI:10.1109/tmm.2021.3121559
摘要

Graph convolutional neural network (GCN) has effectively boosted the multi-label image recognition task by modeling correlation among labels. In previous methods, label correlation is computed based on statistical information through label diffusion, and therefore the same for all samples. This, however, makes graph inference on labels insufficient to handle huge variations among numerous image instances. In this paper, we propose an instance-aware graph convolutional neural network (IA_GCN) framework for the multi-label classification. As a whole, two fused branches of sub-networks are involved in the framework: a global branch modeling the whole image and a local branch exploring dependencies among regions of interests (ROIs). For both the branches, an image-dependent label correlation matrix (ID_LCM), fusing both the statistical label correlation matrix (LCM) and an individual one of each image instance, is constructed to inject adaptive information of label-awareness into the learned features of the model through graph convolution. Specifically, the individual LCM of each image is obtained by mining the label dependencies based on the predicted label scores of those detected ROIs. In this process, considering the contribution differences of ROIs to multi-label classification, variational inference is introduced to learn adaptive scaling factors for those ROIs by considering their complex distribution. Finally, extensive experiments on MS-COCO and VOC datasets show that our proposed approach outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等下完这场雨完成签到,获得积分10
2秒前
郭囯完成签到,获得积分10
2秒前
三土有兀发布了新的文献求助10
3秒前
背完单词好睡觉完成签到 ,获得积分10
3秒前
3秒前
充电宝应助端庄的寄风采纳,获得10
4秒前
bkagyin应助小木棉采纳,获得10
5秒前
hhh发布了新的文献求助10
7秒前
科研通AI5应助Xin采纳,获得10
7秒前
香蕉觅云应助bull9518采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
猪猪hero应助健忘的板凳采纳,获得10
11秒前
Andy_Cheung应助汪三十采纳,获得20
13秒前
2233发布了新的文献求助10
13秒前
14秒前
14秒前
小西瓜完成签到 ,获得积分10
15秒前
段汶完成签到,获得积分20
15秒前
hhh完成签到,获得积分10
15秒前
15秒前
serendipity发布了新的文献求助10
16秒前
18秒前
半柚发布了新的文献求助10
19秒前
19秒前
赘婿应助笑点低涟妖采纳,获得20
19秒前
叶子发布了新的文献求助10
21秒前
hyx完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
hao123发布了新的文献求助10
23秒前
24秒前
桐桐应助段汶采纳,获得10
24秒前
初见发布了新的文献求助10
25秒前
徐徐徐发布了新的文献求助30
27秒前
27秒前
LYX发布了新的文献求助10
27秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3708127
求助须知:如何正确求助?哪些是违规求助? 3256612
关于积分的说明 9901243
捐赠科研通 2969143
什么是DOI,文献DOI怎么找? 1628410
邀请新用户注册赠送积分活动 772132
科研通“疑难数据库(出版商)”最低求助积分说明 743639