同宿轨道
数学
同伦
反应扩散系统
准周期性
图案形成
分岔理论
分叉
双稳态
动力系统理论
数学分析
同宿分支
统计物理学
纯数学
物理
非线性系统
生物
量子力学
准周期函数
遗传学
作者
Fahad Al Saadi,Alan R. Champneys
标识
DOI:10.1098/rsta.2020.0277
摘要
A recent study of canonical activator-inhibitor Schnakenberg-like models posed on an infinite line is extended to include models, such as Gray-Scott, with bistability of homogeneous equilibria. A homotopy is studied that takes a Schnakenberg-like glycolysis model to the Gray-Scott model. Numerical continuation is used to understand the complete sequence of transitions to two-parameter bifurcation diagrams within the localized pattern parameter regime as the homotopy parameter varies. Several distinct codimension-two bifurcations are discovered including cusp and quadruple zero points for homogeneous steady states, a degenerate heteroclinic connection and a change in connectedness of the homoclinic snaking structure. The analysis is repeated for the Gierer-Meinhardt system, which lies outside the canonical framework. Similar transitions are found under homotopy between bifurcation diagrams for the case where there is a constant feed in the active field, to it being in the inactive field. Wider implications of the results are discussed for other pattern-formation systems arising as models of natural phenomena. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
科研通智能强力驱动
Strongly Powered by AbleSci AI