亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sensitivity calibration of a three-axis accelerometer under different temperature conditions using the hybrid GA–PSO–BPNN algorithm

加速度计 粒子群优化 灵敏度(控制系统) 校准 算法 人工神经网络 计算机科学 工程类 人工智能 数学 电子工程 统计 操作系统
作者
Cuicui Du,Deren Kong
出处
期刊:Sensor Review [Emerald Publishing Limited]
卷期号:42 (1): 8-18 被引量:2
标识
DOI:10.1108/sr-07-2021-0227
摘要

Purpose Three-axis accelerometers play a vital role in monitoring the vibrations in aircraft machinery, especially in variable flight temperature environments. The sensitivity of a three-axis accelerometer under different temperature conditions needs to be calibrated before the flight test. Hence, the authors investigated the efficiency and sensitivity calibration of three-axis accelerometers under different conditions. This paper aims to propose the novel calibration algorithm for the three-axis accelerometers or the similar accelerometers. Design/methodology/approach The authors propose a hybrid genetic algorithm–particle swarm optimisation–back-propagation neural network (GA–PSO–BPNN) algorithm. This method has high global search ability, fast convergence speed and strong non-linear fitting capability; it follows the rules of natural selection and survival of the fittest. The authors describe the experimental setup for the calibration of the three-axis accelerometer using a three-comprehensive electrodynamic vibration test box, which provides different temperatures. Furthermore, to evaluate the performance of the hybrid GA–PSO–BPNN algorithm for sensitivity calibration, the authors performed a detailed comparative experimental analysis of the BPNN, GA–BPNN, PSO–BPNN and GA–PSO–BPNN algorithms under different temperatures (−55, 0 , 25 and 70 °C). Findings It has been showed that the prediction error of three-axis accelerometer under the hybrid GA–PSO–BPNN algorithm is the least (approximately ±0.1), which proved that the proposed GA–PSO–BPNN algorithm performed well on the sensitivity calibration of the three-axis accelerometer under different temperatures conditions. Originality/value The designed GA–PSO–BPNN algorithm with high global search ability, fast convergence speed and strong non-linear fitting capability has been proposed to decrease the sensitivity calibration error of three-axis accelerometer, and the hybrid algorithm could reach the global optimal solution rapidly and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lifenghou完成签到 ,获得积分10
19秒前
Chloe应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
xingsixs完成签到 ,获得积分10
47秒前
57秒前
shen_haotian发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
shen_haotian完成签到,获得积分10
1分钟前
orixero应助wangzh007采纳,获得10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
斯文败类应助米奇妙妙吴采纳,获得10
2分钟前
3分钟前
xmsyq完成签到 ,获得积分10
3分钟前
3分钟前
Chonger发布了新的文献求助10
3分钟前
3分钟前
3分钟前
张露发布了新的文献求助10
4分钟前
Ava应助Chonger采纳,获得10
4分钟前
Ljm应助211JZH采纳,获得10
4分钟前
善学以致用应助张露采纳,获得10
4分钟前
Chloe应助科研通管家采纳,获得10
4分钟前
火星上的博涛应助WQY采纳,获得10
4分钟前
5分钟前
5分钟前
大模型应助辰昜采纳,获得10
5分钟前
6分钟前
6分钟前
fyy完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
辰昜发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
张露发布了新的文献求助10
7分钟前
7分钟前
顾矜应助张露采纳,获得10
7分钟前
英俊的铭应助Demi_Ming采纳,获得10
7分钟前
情怀应助dududu采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900708
求助须知:如何正确求助?哪些是违规求助? 4180475
关于积分的说明 12976895
捐赠科研通 3945237
什么是DOI,文献DOI怎么找? 2164010
邀请新用户注册赠送积分活动 1182284
关于科研通互助平台的介绍 1088508