Sensitivity calibration of a three-axis accelerometer under different temperature conditions using the hybrid GA–PSO–BPNN algorithm

加速度计 粒子群优化 灵敏度(控制系统) 校准 算法 人工神经网络 计算机科学 工程类 人工智能 数学 电子工程 统计 操作系统
作者
Cuicui Du,Deren Kong
出处
期刊:Sensor Review [Emerald Publishing Limited]
卷期号:42 (1): 8-18 被引量:2
标识
DOI:10.1108/sr-07-2021-0227
摘要

Purpose Three-axis accelerometers play a vital role in monitoring the vibrations in aircraft machinery, especially in variable flight temperature environments. The sensitivity of a three-axis accelerometer under different temperature conditions needs to be calibrated before the flight test. Hence, the authors investigated the efficiency and sensitivity calibration of three-axis accelerometers under different conditions. This paper aims to propose the novel calibration algorithm for the three-axis accelerometers or the similar accelerometers. Design/methodology/approach The authors propose a hybrid genetic algorithm–particle swarm optimisation–back-propagation neural network (GA–PSO–BPNN) algorithm. This method has high global search ability, fast convergence speed and strong non-linear fitting capability; it follows the rules of natural selection and survival of the fittest. The authors describe the experimental setup for the calibration of the three-axis accelerometer using a three-comprehensive electrodynamic vibration test box, which provides different temperatures. Furthermore, to evaluate the performance of the hybrid GA–PSO–BPNN algorithm for sensitivity calibration, the authors performed a detailed comparative experimental analysis of the BPNN, GA–BPNN, PSO–BPNN and GA–PSO–BPNN algorithms under different temperatures (−55, 0 , 25 and 70 °C). Findings It has been showed that the prediction error of three-axis accelerometer under the hybrid GA–PSO–BPNN algorithm is the least (approximately ±0.1), which proved that the proposed GA–PSO–BPNN algorithm performed well on the sensitivity calibration of the three-axis accelerometer under different temperatures conditions. Originality/value The designed GA–PSO–BPNN algorithm with high global search ability, fast convergence speed and strong non-linear fitting capability has been proposed to decrease the sensitivity calibration error of three-axis accelerometer, and the hybrid algorithm could reach the global optimal solution rapidly and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪西西完成签到,获得积分10
刚刚
Arron发布了新的文献求助10
2秒前
3秒前
4秒前
sunbursl发布了新的文献求助10
5秒前
哇哇哇哇我应助燕子采纳,获得20
5秒前
SYLH应助滕皓轩采纳,获得30
6秒前
奇异果完成签到 ,获得积分10
8秒前
热心市民小红花应助Alice采纳,获得10
8秒前
小皮皮完成签到,获得积分10
9秒前
lanting发布了新的文献求助10
9秒前
哈哈哈完成签到 ,获得积分10
10秒前
丘比特应助冷傲熊猫采纳,获得30
13秒前
11完成签到,获得积分20
13秒前
14秒前
15秒前
浮浮完成签到,获得积分10
15秒前
无情的君浩应助读书狼采纳,获得30
16秒前
17秒前
19秒前
研友_Lmg1gZ发布了新的文献求助80
21秒前
端庄的踏歌完成签到,获得积分10
22秒前
JamesPei应助minmin采纳,获得10
24秒前
李爱国应助一二采纳,获得10
24秒前
27秒前
隐形曼青应助柴柴采纳,获得10
30秒前
30秒前
CQCQ发布了新的文献求助30
32秒前
33秒前
Lucas应助LL爱读书采纳,获得10
34秒前
一二发布了新的文献求助10
36秒前
11关注了科研通微信公众号
37秒前
38秒前
秀丽莛完成签到,获得积分20
39秒前
理想三寻完成签到,获得积分10
41秒前
别不开星完成签到,获得积分10
42秒前
张小馨完成签到 ,获得积分10
43秒前
CO2完成签到,获得积分10
43秒前
今后应助lanting采纳,获得10
45秒前
SIRT1发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003