亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sensitivity calibration of a three-axis accelerometer under different temperature conditions using the hybrid GA–PSO–BPNN algorithm

加速度计 粒子群优化 灵敏度(控制系统) 校准 算法 人工神经网络 计算机科学 工程类 人工智能 数学 电子工程 统计 操作系统
作者
Cuicui Du,Deren Kong
出处
期刊:Sensor Review [Emerald (MCB UP)]
卷期号:42 (1): 8-18 被引量:2
标识
DOI:10.1108/sr-07-2021-0227
摘要

Purpose Three-axis accelerometers play a vital role in monitoring the vibrations in aircraft machinery, especially in variable flight temperature environments. The sensitivity of a three-axis accelerometer under different temperature conditions needs to be calibrated before the flight test. Hence, the authors investigated the efficiency and sensitivity calibration of three-axis accelerometers under different conditions. This paper aims to propose the novel calibration algorithm for the three-axis accelerometers or the similar accelerometers. Design/methodology/approach The authors propose a hybrid genetic algorithm–particle swarm optimisation–back-propagation neural network (GA–PSO–BPNN) algorithm. This method has high global search ability, fast convergence speed and strong non-linear fitting capability; it follows the rules of natural selection and survival of the fittest. The authors describe the experimental setup for the calibration of the three-axis accelerometer using a three-comprehensive electrodynamic vibration test box, which provides different temperatures. Furthermore, to evaluate the performance of the hybrid GA–PSO–BPNN algorithm for sensitivity calibration, the authors performed a detailed comparative experimental analysis of the BPNN, GA–BPNN, PSO–BPNN and GA–PSO–BPNN algorithms under different temperatures (−55, 0 , 25 and 70 °C). Findings It has been showed that the prediction error of three-axis accelerometer under the hybrid GA–PSO–BPNN algorithm is the least (approximately ±0.1), which proved that the proposed GA–PSO–BPNN algorithm performed well on the sensitivity calibration of the three-axis accelerometer under different temperatures conditions. Originality/value The designed GA–PSO–BPNN algorithm with high global search ability, fast convergence speed and strong non-linear fitting capability has been proposed to decrease the sensitivity calibration error of three-axis accelerometer, and the hybrid algorithm could reach the global optimal solution rapidly and accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liangyong_Fu完成签到 ,获得积分10
17秒前
1分钟前
今后应助尤寄风采纳,获得10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
hgsgeospan完成签到,获得积分10
1分钟前
hgs完成签到,获得积分10
2分钟前
2分钟前
默默纲完成签到,获得积分10
2分钟前
满意的伊完成签到,获得积分10
2分钟前
可爱的函函应助liudy采纳,获得10
2分钟前
梅杰发布了新的文献求助10
3分钟前
小新小新完成签到 ,获得积分10
3分钟前
梅杰完成签到,获得积分10
3分钟前
3分钟前
simitundeins应助科研通管家采纳,获得10
3分钟前
3分钟前
zxq1996完成签到 ,获得积分10
3分钟前
不想改格式了完成签到,获得积分10
3分钟前
3分钟前
liudy发布了新的文献求助10
3分钟前
jzm完成签到,获得积分10
5分钟前
谢谢sang发布了新的文献求助10
5分钟前
5分钟前
兼听则明发布了新的文献求助30
5分钟前
5分钟前
6分钟前
是张张啊完成签到,获得积分10
6分钟前
烟花应助心灵美草丛采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
caronnot发布了新的文献求助10
7分钟前
caronnot完成签到,获得积分10
7分钟前
7分钟前
充电宝应助莫妮卡.宾采纳,获得10
7分钟前
chiyudoubao发布了新的文献求助30
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3521536
求助须知:如何正确求助?哪些是违规求助? 3102885
关于积分的说明 9261754
捐赠科研通 2799034
什么是DOI,文献DOI怎么找? 1536357
邀请新用户注册赠送积分活动 714778
科研通“疑难数据库(出版商)”最低求助积分说明 708462