Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model

计算器 中枢神经系统 人工智能 机器学习 神经科学 计算机科学 生物 操作系统
作者
Fabio Urbina,Kimberley M. Zorn,Daniela Brunner,Sean Ekins
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:12 (12): 2247-2253 被引量:17
标识
DOI:10.1021/acschemneuro.1c00265
摘要

The ability to calculate whether small molecules will cross the blood–brain barrier (BBB) is an important task for companies working in neuroscience drug discovery. For a decade, scientists have relied on relatively simplistic rules such as Pfizer's central nervous system multiparameter optimization models (CNS-MPO) for guidance during the drug selection process. In parallel, there has been a continued development of more sophisticated machine learning models that utilize different molecular descriptors and algorithms; however, these models represent a "black box" and are generally less interpretable. In both cases, these methods predict the ability of small molecules to cross the BBB using the molecular structure information on its own without in vitro or in vivo data. We describe here the implementation of two versions of Pfizer's algorithm (Pf-MPO.v1 and Pf-MPO.v2) and compare it with a Bayesian machine learning model of BBB penetration trained on a data set of 2296 active and inactive compounds using extended connectivity fingerprint descriptors. The predictive ability of these approaches was compared with 40 known CNS active drugs initially used by Pfizer as their positive set for validation of the Pf-MPO.v1 score. 37/40 (92.5%) compounds were predicted as active by the Bayesian model, while only 30/40 (75%) received a desirable Pf-MPO.v1 score ≥4 and 33/40 (82.5%) received a desirable Pf-MPO.v2 score ≥4, suggesting the Bayesian model is more accurate than MPO algorithms. This also indicates machine learning models are more flexible and have better predictive power for BBB penetration than simple rule sets that require multiple, accurate descriptor calculations. Our machine learning model statistics are comparable to recent published studies. We describe the implications of these findings and how machine learning may have a role alongside more interpretable methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助dev-evo采纳,获得10
刚刚
大个应助Jx采纳,获得10
3秒前
3秒前
思源应助rainbow采纳,获得10
3秒前
我爱科研关注了科研通微信公众号
4秒前
5秒前
桃桃真知棒完成签到,获得积分10
5秒前
sherry发布了新的文献求助30
7秒前
10秒前
颜云尔发布了新的文献求助10
10秒前
11秒前
很酷的妞子完成签到 ,获得积分10
11秒前
鳗鱼邪欢完成签到 ,获得积分10
11秒前
友好的夜梦关注了科研通微信公众号
12秒前
Venus完成签到,获得积分10
15秒前
九尾狐发布了新的文献求助30
15秒前
16秒前
颜云尔完成签到,获得积分10
16秒前
柔弱芷珊完成签到,获得积分10
16秒前
Jx发布了新的文献求助10
17秒前
wuke完成签到,获得积分20
18秒前
applelpypies完成签到 ,获得积分10
18秒前
研友_sheryl发布了新的文献求助10
22秒前
22秒前
宜醉宜游宜睡应助kaola采纳,获得10
22秒前
明亮的怜寒完成签到,获得积分10
24秒前
24秒前
25秒前
科研通AI2S应助dimensional采纳,获得10
26秒前
田様应助HCX采纳,获得10
26秒前
SF2768完成签到 ,获得积分10
26秒前
26秒前
Karma发布了新的文献求助10
27秒前
cookieMichael给cookieMichael的求助进行了留言
27秒前
bear发布了新的文献求助10
28秒前
wuke发布了新的文献求助50
28秒前
钱大大发布了新的文献求助10
30秒前
sherry完成签到,获得积分20
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148107
求助须知:如何正确求助?哪些是违规求助? 2799178
关于积分的说明 7833767
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628099
版权声明 601655