Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model

计算器 中枢神经系统 人工智能 机器学习 神经科学 计算机科学 生物 操作系统
作者
Fabio Urbina,Kimberley M. Zorn,Daniela Brunner,Sean Ekins
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:12 (12): 2247-2253 被引量:17
标识
DOI:10.1021/acschemneuro.1c00265
摘要

The ability to calculate whether small molecules will cross the blood–brain barrier (BBB) is an important task for companies working in neuroscience drug discovery. For a decade, scientists have relied on relatively simplistic rules such as Pfizer's central nervous system multiparameter optimization models (CNS-MPO) for guidance during the drug selection process. In parallel, there has been a continued development of more sophisticated machine learning models that utilize different molecular descriptors and algorithms; however, these models represent a "black box" and are generally less interpretable. In both cases, these methods predict the ability of small molecules to cross the BBB using the molecular structure information on its own without in vitro or in vivo data. We describe here the implementation of two versions of Pfizer's algorithm (Pf-MPO.v1 and Pf-MPO.v2) and compare it with a Bayesian machine learning model of BBB penetration trained on a data set of 2296 active and inactive compounds using extended connectivity fingerprint descriptors. The predictive ability of these approaches was compared with 40 known CNS active drugs initially used by Pfizer as their positive set for validation of the Pf-MPO.v1 score. 37/40 (92.5%) compounds were predicted as active by the Bayesian model, while only 30/40 (75%) received a desirable Pf-MPO.v1 score ≥4 and 33/40 (82.5%) received a desirable Pf-MPO.v2 score ≥4, suggesting the Bayesian model is more accurate than MPO algorithms. This also indicates machine learning models are more flexible and have better predictive power for BBB penetration than simple rule sets that require multiple, accurate descriptor calculations. Our machine learning model statistics are comparable to recent published studies. We describe the implications of these findings and how machine learning may have a role alongside more interpretable methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝塔完成签到,获得积分10
2秒前
xiaoyan完成签到,获得积分10
2秒前
sherrinford发布了新的文献求助10
2秒前
怪胎完成签到,获得积分10
2秒前
朝朝发布了新的文献求助10
2秒前
4秒前
Yve发布了新的文献求助10
4秒前
5秒前
研友_57A445发布了新的文献求助10
5秒前
安详的凛完成签到,获得积分10
6秒前
orixero应助严三笑采纳,获得10
7秒前
7秒前
顾君如完成签到,获得积分10
9秒前
9秒前
10秒前
eye发布了新的文献求助10
10秒前
Hello应助zzl-2000采纳,获得10
11秒前
彭于晏应助yuan466125789采纳,获得10
11秒前
Autumn完成签到,获得积分10
11秒前
万能图书馆应助minorcold采纳,获得10
12秒前
12秒前
科目三应助wizard采纳,获得10
12秒前
12秒前
王家辉完成签到,获得积分10
13秒前
外向的盼晴完成签到,获得积分10
13秒前
大脚仙完成签到,获得积分10
13秒前
gsgg发布了新的文献求助10
13秒前
14秒前
14秒前
zhang发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
znn发布了新的文献求助10
15秒前
小冰糖完成签到 ,获得积分10
15秒前
15秒前
xiw完成签到,获得积分10
16秒前
zoeydonut发布了新的文献求助10
16秒前
pluto应助墨菲特采纳,获得10
17秒前
霸气的猎豹完成签到,获得积分10
18秒前
华仔应助卞威振采纳,获得10
18秒前
jan0114发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970157
求助须知:如何正确求助?哪些是违规求助? 3514887
关于积分的说明 11176340
捐赠科研通 3250158
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875668
科研通“疑难数据库(出版商)”最低求助积分说明 805004