Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model

计算器 中枢神经系统 人工智能 机器学习 神经科学 计算机科学 生物 操作系统
作者
Fabio Urbina,Kimberley M. Zorn,Daniela Brunner,Sean Ekins
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:12 (12): 2247-2253 被引量:17
标识
DOI:10.1021/acschemneuro.1c00265
摘要

The ability to calculate whether small molecules will cross the blood–brain barrier (BBB) is an important task for companies working in neuroscience drug discovery. For a decade, scientists have relied on relatively simplistic rules such as Pfizer's central nervous system multiparameter optimization models (CNS-MPO) for guidance during the drug selection process. In parallel, there has been a continued development of more sophisticated machine learning models that utilize different molecular descriptors and algorithms; however, these models represent a "black box" and are generally less interpretable. In both cases, these methods predict the ability of small molecules to cross the BBB using the molecular structure information on its own without in vitro or in vivo data. We describe here the implementation of two versions of Pfizer's algorithm (Pf-MPO.v1 and Pf-MPO.v2) and compare it with a Bayesian machine learning model of BBB penetration trained on a data set of 2296 active and inactive compounds using extended connectivity fingerprint descriptors. The predictive ability of these approaches was compared with 40 known CNS active drugs initially used by Pfizer as their positive set for validation of the Pf-MPO.v1 score. 37/40 (92.5%) compounds were predicted as active by the Bayesian model, while only 30/40 (75%) received a desirable Pf-MPO.v1 score ≥4 and 33/40 (82.5%) received a desirable Pf-MPO.v2 score ≥4, suggesting the Bayesian model is more accurate than MPO algorithms. This also indicates machine learning models are more flexible and have better predictive power for BBB penetration than simple rule sets that require multiple, accurate descriptor calculations. Our machine learning model statistics are comparable to recent published studies. We describe the implications of these findings and how machine learning may have a role alongside more interpretable methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘玥言完成签到,获得积分20
刚刚
Micky完成签到,获得积分10
1秒前
科研通AI5应助受伤的怀绿采纳,获得10
2秒前
ding应助111采纳,获得10
3秒前
3秒前
3秒前
xingxing完成签到,获得积分20
3秒前
研友_LBRPOL发布了新的文献求助10
4秒前
科研通AI2S应助shinn采纳,获得10
4秒前
4秒前
4秒前
hostghost应助纳斯达克采纳,获得10
4秒前
爱宝乐宝福宝应助灿灿采纳,获得10
5秒前
dudu123发布了新的文献求助10
5秒前
刘玥言发布了新的文献求助10
6秒前
swx完成签到,获得积分10
7秒前
CodeCraft应助河豚采纳,获得10
7秒前
吴巷玉完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
火山发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
小亮哈哈发布了新的文献求助10
12秒前
情怀应助董豆豆采纳,获得10
13秒前
希望天下0贩的0应助火山采纳,获得10
13秒前
复杂发布了新的文献求助10
14秒前
红莲墨生发布了新的文献求助10
14秒前
15秒前
今后应助拼搏的潘子采纳,获得10
15秒前
15秒前
CipherSage应助俏皮的飞烟采纳,获得30
16秒前
孟小茶发布了新的文献求助10
16秒前
研友_LBRPOL完成签到,获得积分10
16秒前
畅快的寄松完成签到,获得积分10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519700
关于积分的说明 11199305
捐赠科研通 3256034
什么是DOI,文献DOI怎么找? 1798049
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305