亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model

计算器 中枢神经系统 人工智能 机器学习 神经科学 计算机科学 生物 操作系统
作者
Fabio Urbina,Kimberley M. Zorn,Daniela Brunner,Sean Ekins
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:12 (12): 2247-2253 被引量:17
标识
DOI:10.1021/acschemneuro.1c00265
摘要

The ability to calculate whether small molecules will cross the blood–brain barrier (BBB) is an important task for companies working in neuroscience drug discovery. For a decade, scientists have relied on relatively simplistic rules such as Pfizer's central nervous system multiparameter optimization models (CNS-MPO) for guidance during the drug selection process. In parallel, there has been a continued development of more sophisticated machine learning models that utilize different molecular descriptors and algorithms; however, these models represent a "black box" and are generally less interpretable. In both cases, these methods predict the ability of small molecules to cross the BBB using the molecular structure information on its own without in vitro or in vivo data. We describe here the implementation of two versions of Pfizer's algorithm (Pf-MPO.v1 and Pf-MPO.v2) and compare it with a Bayesian machine learning model of BBB penetration trained on a data set of 2296 active and inactive compounds using extended connectivity fingerprint descriptors. The predictive ability of these approaches was compared with 40 known CNS active drugs initially used by Pfizer as their positive set for validation of the Pf-MPO.v1 score. 37/40 (92.5%) compounds were predicted as active by the Bayesian model, while only 30/40 (75%) received a desirable Pf-MPO.v1 score ≥4 and 33/40 (82.5%) received a desirable Pf-MPO.v2 score ≥4, suggesting the Bayesian model is more accurate than MPO algorithms. This also indicates machine learning models are more flexible and have better predictive power for BBB penetration than simple rule sets that require multiple, accurate descriptor calculations. Our machine learning model statistics are comparable to recent published studies. We describe the implications of these findings and how machine learning may have a role alongside more interpretable methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
26秒前
1分钟前
烂漫的绿茶完成签到 ,获得积分10
1分钟前
DONG发布了新的文献求助10
1分钟前
寂寞的尔丝完成签到 ,获得积分10
1分钟前
小小绿发布了新的文献求助50
2分钟前
超级的千青完成签到 ,获得积分10
2分钟前
ding应助知闲采纳,获得10
3分钟前
3分钟前
满意机器猫完成签到 ,获得积分10
3分钟前
宁不正发布了新的文献求助10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
赘婿应助宁不正采纳,获得10
3分钟前
3分钟前
3分钟前
小小绿完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Sylvia_J完成签到 ,获得积分10
4分钟前
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
hhh完成签到 ,获得积分10
5分钟前
Shicheng完成签到,获得积分10
6分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
wangfaqing942完成签到 ,获得积分10
8分钟前
8分钟前
飞天的鱼发布了新的文献求助10
8分钟前
飞天的鱼完成签到,获得积分10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
在水一方完成签到,获得积分0
9分钟前
科研通AI2S应助hjy采纳,获得10
9分钟前
fcycukvujblk完成签到,获得积分10
9分钟前
10分钟前
hjy发布了新的文献求助10
10分钟前
11分钟前
宁不正发布了新的文献求助10
11分钟前
AixLeft完成签到 ,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635124
求助须知:如何正确求助?哪些是违规求助? 4734822
关于积分的说明 14989758
捐赠科研通 4792826
什么是DOI,文献DOI怎么找? 2559937
邀请新用户注册赠送积分活动 1520202
关于科研通互助平台的介绍 1480262