相变
材料科学
制作
化学工程
复合数
导电体
化学物理
纳米技术
相(物质)
复合材料
化学
凝聚态物理
物理
工程类
医学
病理
有机化学
替代医学
作者
Hanna He,Xiaolong Li,Dan Huang,Jinyi Luan,Sailin Liu,Wei Kong Pang,Dan Sun,Yougen Tang,Wenzheng Zhou,Lirong He,Chuhong Zhang,Haiyan Wang,Zhanhu Guo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-05-10
卷期号:15 (5): 8896-8906
被引量:102
标识
DOI:10.1021/acsnano.1c01518
摘要
Phase transition engineering, with the ability to alter the electronic structure and physicochemical properties of materials, has been widely used to achieve the thermodynamically unstable metallic phase MoS2 (1T-MoS2), although the complex operating conditions and low yield of previous strategies make the large-scale fabrication of 1T-MoS2 a big challenge. Herein, we report a facile electron injection strategy for phase transition engineering and fabricate a composite of conductive TiO chemically bonded to 1T-MoS2 nanoflowers (TiO-1T-MoS2 NFs) on a large scale. The underlying mechanism analysis reveals that electron-injection-engineering triggers a reorganization of the Mo 4d orbitals and results in a 100% phase transition of MoS2 from 2H to 1T. In the TiO-1T-MoS2 NFs composite, the 1T-MoS2 demonstrates a higher electronic conductivity, a lower Na+ diffusion barrier, and a more restricted S release than 2H-MoS2. In addition, conductive TiO bonding successfully resolves the stability challenge of the 1T phase. These merits endow TiO-1T-MoS2 NFs electrodes with an excellent rate capability (650/288 mAh g–1 at 50/20 000 mA g–1, respectively) and an outstanding cyclability (501 mAh g–1 at 1000 mA g–1 after 700 cycles) in sodium ion batteries. Such an improvement signifies that this facile and scalable phase-transition engineering combined with a deep mechanism analysis offers an important reference for designing advanced materials for various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI