Do plaque-related factors affect the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system? Comparison with invasive coronary angiography

医学 狭窄 逻辑回归 放射科 心脏病学 内科学 冠状动脉疾病 计算机断层血管造影 神经组阅片室 冠状动脉造影 血管造影 介入放射学 神经学 心肌梗塞 精神科
作者
Jie Xu,Linli Chen,Xiaojia Wu,Chuanming Li,Guangyong Ai,Yuexi Liu,Bitong Tian,Dajing Guo,Fang Zheng
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 1866-1878 被引量:5
标识
DOI:10.1007/s00330-021-08299-6
摘要

The aim of this study was to investigate the effects of plaque-related factors on the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system (AI-CADS). Patients who underwent coronary computed tomography angiography (CCTA) and invasive coronary angiography (ICA) were retrospectively included in this study. The degree of stenosis in each vessel was collected from CCTA and ICA, and the information on plaque-related factors (plaque length, plaque type, and coronary artery calcium score (CAC)) of the vessels with plaques was collected from CCTA. In total, 1224 vessels in 306 patients (166 men; 65.7 ± 10.1 years) were analyzed. Of these, 391 vessels in 249 patients showed significant stenosis using ICA as the gold standard. Using per-vessel as the unit, the area under the curves of coronary stenosis ≥ 50% for AI-CADS, doctor, and AI-CADS + doctor was 0.764, 0.837, and 0.853, respectively. The accuracies in interpreting the degree of coronary stenosis were 56.0%, 68.1%, and 71.2%, respectively. Seven hundred fifty vessels showed plaques on CCTA; plaque type did not affect the interpretation results by AI-CADS (chi-square test: p = 0.0093; multiple logistic regression: p = 0.4937). However, the interpretation results for plaque length (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0061) and CACs (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0001) were significantly different. AI-CADS has an ability to distinguish ≥ 50% coronary stenosis, but additional manual interpretation based on AI-CADS is necessary. The plaque length and CACs will affect the diagnostic performance of AI-CADS. • AI-CADS can help radiologists quickly assess CCTA and improve diagnostic confidence. • Additional manual interpretation on the basis of AI-CADS is necessary. • The plaque length and CACs will affect the diagnostic performance of AI-CADS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BAI_1完成签到,获得积分10
2秒前
ouLniM完成签到 ,获得积分10
2秒前
乐乐应助Jing采纳,获得10
3秒前
XY完成签到,获得积分10
3秒前
无情的访冬完成签到 ,获得积分10
3秒前
所所应助223311采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
个性的翠芙完成签到 ,获得积分10
6秒前
善学以致用应助庆次采纳,获得10
6秒前
MOMO完成签到,获得积分10
8秒前
彤T246完成签到,获得积分10
8秒前
科研通AI6应助加油采纳,获得10
8秒前
sevenhill应助幽默孤菱采纳,获得10
10秒前
10秒前
卧推120发布了新的文献求助10
11秒前
12秒前
大个应助高婉婷采纳,获得10
12秒前
yalan完成签到,获得积分10
13秒前
义气莫茗完成签到 ,获得积分10
13秒前
小鱼发布了新的文献求助10
15秒前
DCH完成签到 ,获得积分10
16秒前
庆次发布了新的文献求助10
17秒前
18秒前
思源应助nana2023采纳,获得10
19秒前
wangaiting完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
结实缘郡发布了新的文献求助30
21秒前
文艺的懿应助糯米饭采纳,获得10
21秒前
21秒前
liu发布了新的文献求助10
22秒前
木头发布了新的文献求助10
22秒前
浮游应助Roy采纳,获得10
22秒前
顺心的飞飞完成签到,获得积分10
23秒前
23秒前
24秒前
聪明的bala完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434422
求助须知:如何正确求助?哪些是违规求助? 4546707
关于积分的说明 14203943
捐赠科研通 4466693
什么是DOI,文献DOI怎么找? 2448283
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969