IMU filter settings for high intensity activities

惯性测量装置 后备箱 运动学 加速度计 加速度 矢状面 滤波器(信号处理) 数学 计算机科学 物理医学与康复 物理 医学 人工智能 计算机视觉 解剖 生态学 经典力学 生物 操作系统
作者
Emily J. Miller,Riley C. Sheehan,Kenton R. Kaufman
出处
期刊:Gait & Posture [Elsevier]
卷期号:91: 26-29 被引量:1
标识
DOI:10.1016/j.gaitpost.2021.10.006
摘要

Recommendations for cut-off frequencies for inertial measurement units (IMU) are either based on marker-based motion analysis or based on low intensity activities. The selection of filter cut-off frequencies can impact the extracted variables from the filtered signal. There are no recommendations for IMU filter settings when collecting biomechanical data of high intensity activities.What are appropriate IMU cut-off frequency filter settings for high intensity activities?Ten unimpaired participants were studied during controlled postural perturbations using a microprocessor-controlled treadmill. Disturbances were delivered in forward and backward directions and incrementally increased in both directions until the participant was unable to maintain an upright posture and the trial resulted in a fall. An IMU was placed on their sternum to obtain trunk sagittal kinematics. Custom code was implemented to estimate trunk angle, angular velocity, and linear acceleration about the flexion-extension axis in the trunk IMU coordinate system. The three trials that resulted in falls in each direction for each participant (60 total trials) were analysed. These trials were limited to 500 msec of the disturbance period. The cut-off frequency was calculated for trunk kinematics using 99 percent of the energy spectrum (E99).The trunk flexion angle (4 ± 4 Hz) and linear acceleration (35 ± 10 Hz) cut-off frequencies agreed with previously reported values. The cut-off frequency for trunk flexion angular velocity (26 ± 7 Hz) was higher than values previously reported.Selection of cut-off frequency should be based on segment accelerations and not simply activity or segment of interest. Deliberate selection and reporting of filter settings in biomechanics research will improve data quality, reliability of inferences, and reproducibility of studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goufufu完成签到,获得积分10
1秒前
2秒前
十九完成签到,获得积分10
2秒前
3秒前
3秒前
Survivor发布了新的文献求助30
5秒前
彪壮的慕山完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
hy完成签到 ,获得积分10
8秒前
十九发布了新的文献求助10
8秒前
8秒前
米饭给米饭的求助进行了留言
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
harriet chen发布了新的文献求助10
9秒前
秋刀鱼完成签到,获得积分10
9秒前
9秒前
友好的驳发布了新的文献求助10
9秒前
9秒前
Yuki发布了新的文献求助10
10秒前
10秒前
幻昼发布了新的文献求助10
10秒前
我好困完成签到,获得积分10
10秒前
11秒前
马小翠发布了新的文献求助10
11秒前
清浅发布了新的文献求助10
12秒前
SebastianW发布了新的文献求助10
12秒前
zho关闭了zho文献求助
12秒前
NoraZibelin2002应助BJ_whc采纳,获得30
12秒前
12秒前
13秒前
研友_bZzO08完成签到,获得积分10
14秒前
14秒前
传奇3应助冷泠凛采纳,获得10
14秒前
陈隆发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059