选择性
吸附剂
吸附
等结构
气体分离
配体(生物化学)
化学工程
化学
珍珠岩
材料科学
选择性吸附
膜
有机化学
催化作用
晶体结构
复合材料
受体
工程类
生物化学
作者
Naveen Kumar,Soumya Mukherjee,Nathan C. Harvey-Reid,Andrey A. Bezrukov,Kui Tan,Vinícius Martins,Matthias Vandichel,Tony Pham,Lisa M. van Wyk,Kolade A. Oyekan,Amrit Kumar,Katherine A. Forrest,Komal M. Patil,Leonard J. Barbour,Brian Space,Yining Huang,Paul E. Kruger,Michael J. Zaworotko
出处
期刊:Chem
[Elsevier]
日期:2021-08-10
卷期号:7 (11): 3085-3098
被引量:92
标识
DOI:10.1016/j.chempr.2021.07.007
摘要
The trade-off between selectivity and adsorption capacity with porous materials is a major roadblock to reducing the energy footprint of gas separation technologies. To address this matter, we report herein a systematic crystal engineering study of C2H2 removal from CO2 in a family of hybrid ultramicroporous materials (HUMs). The HUMs are composed of the same organic linker ligand, 4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, pypz, three inorganic pillar ligands, and two metal cations, thereby affording six isostructural pcu topology HUMs. All six HUMs exhibited strong binding sites for C2H2 and weaker affinity for CO2. The tuning of pore size and chemistry enabled by crystal engineering resulted in benchmark C2H2/CO2 separation performance. Fixed-bed dynamic column breakthrough experiments for an equimolar (v/v = 1:1) C2H2/CO2 binary gas mixture revealed that one sorbent, SIFSIX-21-Ni, was the first C2H2 selective sorbent that combines exceptional separation selectivity (27.7) with high adsorption capacity (4 mmol·g-1).
科研通智能强力驱动
Strongly Powered by AbleSci AI