重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Traceability Technology Adoption in Supply Chain Networks

可追溯性 供应链 业务 供应链管理 风险分析(工程) 计算机科学 营销 软件工程
作者
Philippe Blaettchen,Andre Calmon,Georgina Hall
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:15
标识
DOI:10.1287/mnsc.2022.01759
摘要

Modern traceability technologies promise to improve supply chain management by simplifying recalls, increasing visibility, and verifying sustainable supplier practices. Initiatives leading the implementation of traceability technologies must choose the least-costly set of firms—or seed set—to target for early adoption. Choosing this seed set is challenging because firms are part of supply chains interlinked in complex networks, yielding an inherent supply chain effect: benefits obtained from traceability are conditional on technology adoption by a subset of firms in a product’s supply chain. We prove that the problem of selecting the least-costly seed set in a supply chain network is hard to solve and even approximate within a polylogarithmic factor. Nevertheless, we provide a novel linear programming-based algorithm to identify the least-costly seed set. The algorithm is fixed-parameter tractable in the supply chain network’s treewidth, which we show to be low in real-world supply chain networks. The algorithm also enables us to derive easily computable bounds on the cost of selecting an optimal seed set. We leverage our toolbox to conduct large-scale numerical experiments that provide insights into how the supply chain network structure influences diffusion. These insights can help managers optimize their technology diffusion strategy. This paper was accepted by Chung Piaw Teo, optimization. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01759 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助脑壳疼采纳,获得10
刚刚
张伟完成签到,获得积分10
1秒前
风中的以山完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
Mine_cherry完成签到,获得积分10
2秒前
2秒前
橙果果发布了新的文献求助20
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
QG完成签到,获得积分10
4秒前
dongdong发布了新的文献求助10
4秒前
K123发布了新的文献求助10
4秒前
johnzsin发布了新的文献求助10
5秒前
我是老大应助虚幻灵松采纳,获得10
5秒前
DDangyl完成签到,获得积分10
5秒前
6秒前
呼君伟完成签到,获得积分10
6秒前
望川发布了新的文献求助10
6秒前
客服小祥发布了新的文献求助10
6秒前
6秒前
Vu1nerable发布了新的文献求助10
6秒前
程希完成签到,获得积分10
7秒前
一口娴蛋黄完成签到,获得积分10
7秒前
研友_VZG7GZ应助zzzy采纳,获得10
7秒前
科研通AI6应助kkkkkk采纳,获得10
7秒前
温婉的山兰完成签到,获得积分10
7秒前
7秒前
7秒前
111发布了新的文献求助10
7秒前
小马甲应助轻松刚采纳,获得10
8秒前
8秒前
英吉利25发布了新的文献求助10
8秒前
善学以致用应助陈哈哈采纳,获得10
9秒前
Li656943234发布了新的文献求助20
9秒前
9秒前
精明黄蜂完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590