Identity Inference on Blockchain Using Graph Neural Network

计算机科学 推论 可扩展性 图形 理论计算机科学 匿名 身份(音乐) 数据库事务 数字身份 身份盗窃 人工智能 数据挖掘 计算机安全 标识符 计算机网络 数据库 声学 物理
作者
Jie Shen,Jiajun Zhou,Yunyi Xie,Shanqing Yu,Qi Xuan
出处
期刊:Communications in computer and information science 卷期号:: 3-17 被引量:27
标识
DOI:10.1007/978-981-16-7993-3_1
摘要

The anonymity of blockchain has accelerated the growth of illegal activities and criminal behaviors on cryptocurrency platforms. Although decentralization is one of the typical characteristics of blockchain, we urgently call for effective regulation to detect these illegal behaviors to ensure the safety and stability of user transactions. Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security. As a common tool, graph mining technique can effectively represent the interactive information between accounts and be used for identity inference. However, existing methods cannot balance scalability and end-to-end architecture, resulting high computational consumption and weak feature representation. In this paper, we present a novel approach to analyze user’s behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern and effectively avoids computation in large-scale graph. Furthermore, we propose a generic end-to-end graph neural network model, named \(\text {I}^2 \text {BGNN}\), which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity, achieving de-anonymization. Extensive experiments on EOSG and ETHG datasets demonstrate that the proposed method achieve the state-of-the-art performance in identity inference.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xm发布了新的文献求助10
刚刚
李李完成签到,获得积分10
1秒前
1秒前
1秒前
NexusExplorer应助Yghu采纳,获得10
2秒前
丘比特应助第七个星球采纳,获得10
2秒前
科研通AI5应助xiajj采纳,获得10
2秒前
2秒前
852应助777采纳,获得10
3秒前
明德zhuang发布了新的文献求助30
3秒前
小马甲应助刘浩然采纳,获得10
3秒前
Epiphany发布了新的文献求助10
3秒前
传奇3应助从容秋寒采纳,获得10
4秒前
搜集达人应助陈述采纳,获得10
5秒前
6秒前
liu发布了新的文献求助10
6秒前
走四方应助RRROP采纳,获得10
7秒前
8秒前
豆豆发布了新的文献求助10
9秒前
睡前吃太饱了完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
智丹完成签到,获得积分10
12秒前
13秒前
脑洞疼应助liu采纳,获得10
13秒前
15秒前
鲤鱼懿轩发布了新的文献求助10
15秒前
从容秋寒发布了新的文献求助10
17秒前
顾易完成签到,获得积分10
17秒前
18秒前
SYLH应助xm采纳,获得10
18秒前
BioRick发布了新的文献求助10
19秒前
NexusExplorer应助a1313采纳,获得10
19秒前
Epiphany完成签到,获得积分10
20秒前
20秒前
ding应助aibiotech采纳,获得10
22秒前
小四发布了新的文献求助10
22秒前
豆豆完成签到,获得积分10
23秒前
SciGPT应助第七个星球采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427