Deep learning in ECG diagnosis: A review

计算机科学 深度学习 人工智能 卷积神经网络 机器学习 异常 后遗症 特征提取 模式识别(心理学) 医学 精神科
作者
Xinwen Liu,Huan Wang,Zongjin Li,Lang Qin
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:227: 107187-107187 被引量:198
标识
DOI:10.1016/j.knosys.2021.107187
摘要

Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels abnormality that serves as a global leading reason for death. The earlier the abnormal heart rhythm is discovered, the less severe the sequela and the faster the recovery. Electrocardiogram (ECG), as a main way to detect the electrical activity of heart, is a very important harmless means of predicting and diagnosing CVDs. However, ECG signal has characteristics of complex and high chaos, making it time-consuming and exhausting to interpret ECG signal even for experts. Hence, computer-aided methods are required to relief human burden and reduce errors caused by tiredness, inter- and intra-difference. Deep learning shows outstanding performance on ECG classification studies recent few years. Its hierarchical architecture enables higher-level features obtained and its strong ability to feature extraction contributes to classification project. Latest studies can achieve higher accuracy and efficiency than manual classification by experts. In this paper, we review the existing studies of deep learning applied in ECG diagnosis according to four typical algorithms: stacked auto-encoders, deep belief network, convolutional neural network and recurrent neural network. We first introduced the mechanism, development and application of the algorithms. Then we review their applications in ECG diagnosis systematically, discussing their highlights and limitations. Our view about future potential development of deep learning in ECG diagnosis is stated in the final part of this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醒醒发布了新的文献求助10
刚刚
科研通AI2S应助花灯王子采纳,获得10
刚刚
刚刚
勤恳傲儿发布了新的文献求助10
刚刚
充电宝应助锦林采纳,获得10
1秒前
Hello应助大胆的弼采纳,获得10
2秒前
2秒前
814791097完成签到,获得积分10
2秒前
21驳回了哦豁应助
2秒前
科研通AI2S应助科研工作者采纳,获得10
2秒前
记忆等于零完成签到,获得积分10
2秒前
Seren完成签到,获得积分10
3秒前
兴奋的依珊完成签到,获得积分10
3秒前
4秒前
5秒前
zyj完成签到,获得积分10
5秒前
5秒前
鲜于夜白完成签到,获得积分10
6秒前
8秒前
勤恳傲儿完成签到,获得积分10
8秒前
8秒前
qq完成签到,获得积分10
8秒前
科研通AI2S应助小王采纳,获得10
8秒前
8秒前
啦啦啦完成签到,获得积分10
9秒前
yeye发布了新的文献求助10
9秒前
善学以致用应助鲜于夜白采纳,获得10
10秒前
西乡塘塘主完成签到,获得积分10
10秒前
欣慰的茉莉完成签到 ,获得积分10
10秒前
渔舟唱晚发布了新的文献求助30
11秒前
醒醒完成签到,获得积分10
11秒前
qq发布了新的文献求助10
12秒前
12秒前
Owen应助Huangy000采纳,获得10
12秒前
爆米花应助种花家的狗狗采纳,获得10
12秒前
12秒前
13秒前
13秒前
言不得语完成签到,获得积分10
13秒前
棒槌完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134472
求助须知:如何正确求助?哪些是违规求助? 2785402
关于积分的说明 7772258
捐赠科研通 2441051
什么是DOI,文献DOI怎么找? 1297713
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813