A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping

像素 山崩 邻里(数学) 数据挖掘 计算机科学 人工神经网络 人工智能 模式识别(心理学) 地理 数学 工程类 数学分析 岩土工程
作者
Yi He,Zhan'ao Zhao,Yang Wang,Haowen Yan,Wenhui Wang,Sheng Yao,Lifeng Zhang,Tao Liu
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:104: 102508-102508 被引量:40
标识
DOI:10.1016/j.jag.2021.102508
摘要

Landslide susceptibility mapping (LSM) is very important for hazard risk identification and prevention. Most of existing neural network models extract a pixel neighborhood feature or a pixel sequence feature of landslide factors on one side, which leads to the generalization ability of the network models difficultly, and had a low prediction accuracy in complex scenes. In this paper, a new unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood is proposed for LSM. Different from the traditional prediction model framework, the landslide conditioning factors are merged into a unified network model in parallel with the pixel sequence features and pixel neighbourhood features. In the experiment, we take the proportion of landslide binary pixels as label data, which represents the landslide possibility in the neighbourhood. We propose a pixel sequence feature extraction algorithm based on a gated recurrent unit (GRU) network and a pixel neighbourhood feature extraction algorithm based on a multi-scale convolution neural network (MSCNN). In this study, the landslide conditioning factors were analysed by multicollinearity analysis and the frequency ratio (FR) method. The performance of the modes was evaluated by statistical indexes and the correlation analysis. The LSM results were verified by google earth images and field investigation. Our research shows that the proposed model can greatly improve the accuracy of LSM compared with the individual GRU and MSCNN, especially, the proposed model had 6.1% more improvement than the GRU model in terms of the area under curve (AUC). Therefore, we suggest that the proposed model is a suitable technology for use in early identification and landslide prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
梵星应助科研通管家采纳,获得20
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
薛枏完成签到,获得积分10
1秒前
共享精神应助不会下文献采纳,获得80
2秒前
Yangyang完成签到,获得积分0
3秒前
毛毛完成签到,获得积分10
5秒前
wdd发布了新的文献求助10
5秒前
雨天完成签到,获得积分10
5秒前
好好完成签到,获得积分20
5秒前
传奇3应助Creamai采纳,获得10
5秒前
酷波er应助优雅的听兰采纳,获得10
5秒前
小魏不学无术完成签到,获得积分10
6秒前
foreverchoi完成签到,获得积分10
7秒前
盐盐发布了新的文献求助150
7秒前
医药点发布了新的文献求助20
7秒前
畅快长颈鹿完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
10秒前
勤奋伟泽完成签到 ,获得积分10
10秒前
合适的不言完成签到,获得积分10
11秒前
11秒前
华康完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
15秒前
baicunli发布了新的文献求助10
16秒前
YangJie发布了新的文献求助10
17秒前
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012