Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition

计算机科学 学习迁移 人工智能 语音识别 机器学习 稳健性(进化) 知识转移 模式识别(心理学) 生物化学 化学 知识管理 基因
作者
Sheng Zhang,Min Chen,Jincai Chen,Yuan Fang Li,Yi‐Ling Wu,Minglei Li,Chuanbo Zhu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:229: 107340-107340 被引量:19
标识
DOI:10.1016/j.knosys.2021.107340
摘要

Speech emotion recognition is an important task with a wide range of applications. However, the progress of speech emotion recognition is limited by the lack of large, high-quality labeled speech datasets, due to the high annotation cost and the inherent ambiguity in emotion labels. The recent emergence of large-scale video data makes it possible to obtain massive, though unlabeled speech data. To exploit this unlabeled data, previous works have explored semi-supervised learning methods on various tasks. However, noisy pseudo-labels remain a challenge for these methods. In this work, to alleviate the above issue, we propose a new architecture that combines cross-modal knowledge transfer from visual to audio modality into our semi-supervised learning method with consistency regularization. We posit that introducing visual emotional knowledge by the cross-modal transfer method can increase the diversity and accuracy of pseudo-labels and improve the robustness of the model. To combine knowledge from cross-modal transfer and semi-supervised learning, we design two fusion algorithms, i.e. weighted fusion and consistent & random. Our experiments on CH-SIMS and IEMOCAP datasets show that our method can effectively use additional unlabeled audio-visual data to outperform state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助聪明的向日葵采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
彭于彦祖应助科研通管家采纳,获得30
刚刚
领导范儿应助科研通管家采纳,获得20
刚刚
刚刚
心印应助科研通管家采纳,获得10
刚刚
z3Q应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
NPC应助科研通管家采纳,获得30
2秒前
2秒前
Livvia应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
blance发布了新的文献求助40
2秒前
2秒前
2秒前
xigua完成签到,获得积分10
2秒前
英姑应助lapidary采纳,获得10
2秒前
脑洞疼应助Babyfive采纳,获得10
3秒前
3秒前
多喝水我完成签到 ,获得积分10
3秒前
华仔应助两袖清风采纳,获得10
3秒前
GSirius发布了新的文献求助10
3秒前
大马猴发布了新的文献求助10
4秒前
邱天发布了新的文献求助10
5秒前
5秒前
5秒前
爱静静应助wz采纳,获得10
5秒前
低调发布了新的文献求助10
5秒前
wt发布了新的文献求助10
6秒前
6秒前
昵称可以改吗完成签到,获得积分10
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945312
关于积分的说明 8524570
捐赠科研通 2621088
什么是DOI,文献DOI怎么找? 1433321
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650325