Discrimination of Binary Gas Mixture Using CMUT Based Sound Attenuation Spectrum Gas Sensor

衰减 声学 超声波传感器 传感器 甲烷 二进制数 探测器 电容感应 材料科学 电容式微机械超声换能器 振膜(声学) 计算机科学 化学 光学 振动 物理 电信 操作系统 有机化学 算术 数学
作者
Luis Iglesias Hernandez,Priyadarshini Shanmugam,Jean-François Michaud,Daniel Alquier,Dominique Certon,Isabelle Dufour
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (59): 1592-1592
标识
DOI:10.1149/ma2021-01591592mtgabs
摘要

Introduction In order to overcome the long term stability issues caused by functionalized films in gas sensing [1], uncoated sensors have become increasingly attractive for applications where the selectivity is not a major concern such as industrial gas monitoring. Despite their poor selectivity, discrimination can be achieved by measuring different properties of the gas mixture [2]. The sound attenuation of a gas depends on several of its physical properties such as mass density, viscosity and sound velocity among several others [3]. Its value depends on the frequency in a non-linear manner which makes measuring large parts of its spectrum interesting for gas discrimination. In this abstract, an uncoated sensor capable of measuring the attenuation spectrum continuously over a frequency range is presented. Measurements on binary mixtures such as nitrogen (N 2 ) with either hydrogen (H 2 ), carbon dioxide (CO 2 ) or methane (CH 4 ) are presented. Then, a simple method based on the construction of a preliminary mixture signature allowing to distinguish each type of mixture demonstrates the potential of this sensor to be used in smart gas sensors as a perspective to future work. Although attenuation sensors can be found in the literature [3], to the best of our knowledge, it is the first of this kind with easy integration thanks to the use of capacitive micromachined ultrasonic transducers (CMUTs) and allowing discrimination of binary mixtures. Setup The manufacturing process of the CMUT arrays is similar to the one used in reference [4] and their characteristics are reported in Table 1. Schematics of the experimental setup are shown in Figure 1. An electrical signal (1) is sent to an emitter CMUT array (2) which generates a continuous ultrasonic wave at a given frequency f . The wave travels a distance d through the gas and is attenuated by an amount that depends on the gas composition, through the attenuation coefficient α , before reaching the receiver (3) which is connected to a charge amplifier (4). Both the emitter and receiver signals are fed to a network analyzer (5) in order to measure the total transfer function of the setup | H | as a function of frequency. Far from the resonant frequency of the CMUT array ( f r = 9.6MHz), | H | is given by Equation 1, where | H e | is the transfer function of the setup which is independent of the gas. Thus, by measuring first | H | under pure N 2 , | H N2 |, it is possible to know the shift in attenuation Δα according to Equation 2. Results Tests under H 2 , CO 2 and CH 4 in N 2 at different concentrations were performed at 20°C and 1atm for f ranging from 2MHz to 4.5MHz. The normalized measurements are shown in Figures 2, 3 and 4, respectively. The normalization consists in multiplying Δ α by the wavelength in N 2 , λ N2 , at the optimal frequency, f opt , for each mixture. Theses frequencies correspond to the best theoretical limit of detection LOD (Equation 3). The noise standard deviation σ increases with the frequency from 1.7x10 -5 at 2MHz to 6.1x10 -5 at 4.5MHz. For each mixture, the optimal frequency, f opt , sensitivity, S, and theoretical limit of detection, LOD, are reported in Table 2. The calculated values of the LOD were then verified for the three binary mixtures at lower concentrations. The results are shown in Figures 5, 6 and 7 and are consistent with the calculations and even better in the case of CH 4 where the step at 0.25% is still visible. These values of LOD correspond approximately to an attenuation of 1m -1 ,which corresponds to the state of the art on attenuation sensors [3]. Finally the normalized attenuation spectra for the three mixtures, shown in Figure 8, makes the discrimination of the three mixtures possible. In this study, it is done by simply considering both the sign of λ N2 Δ α and the one of the mean slope Σ in the region between 2MHz and 3.6MHz defined by Equation 4 (both signs are reported in Table 2 for each mixture). Conclusion A CMUTs based device is used to measure the attenuation spectrum of a gas. Its characterization shows performances comparable to the state of the art of attenuation sensors. Such measurements allow to determine the concentration of binary mixtures of N 2 with either H 2 , CO 2 or CH 4 . Finally, a signature of each of the three binary mixture is introduced to show the potential of this sensor as part of a smart sensor network. Possible perspectives include increasing the frequency range and testing in other gases. References [1] R. K. Sharma, P. C. H. Chan, Z. Tang, G. Yan, I.-M. Hsing, and J. K. O. Sin, “Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices,” Sens. Actuators B Chem. , vol. 81, no. 1, pp. 9–16, Dec. 2001, doi: 10.1016/S0925-4005(01)00920-0. [2] L. Iglesias, M. T. Boudjiet, and I. Dufour, “Discrimination and concentration measurement of different binary gas mixtures with a simple resonator through viscosity and mass density measurements,” Sens. Actuators B Chem. , vol. 285, pp. 487–494, Apr. 2019, doi: 10.1016/j.snb.2019.01.070. [3] A. Petculescu, B. Hall, R. Fraenzle, S. Phillips, and R. M. Lueptow, “A prototype acoustic gas sensor based on attenuation,” J. Acoust. Soc. Am. , vol. 120, no. 4, pp. 1779–1782, Oct. 2006, doi: 10.1121/1.2336758. [4] J. Heller, A. Boulme, D. Alquier, S. Ngo, and D. Certon, “Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol. 65, no. 4, pp. 617–629, Apr. 2018, doi: 10.1109/TUFFC.2018.2796303. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bckl888完成签到,获得积分10
刚刚
Dr_Chu完成签到 ,获得积分10
12秒前
科奇给海藻的求助进行了留言
14秒前
安子完成签到 ,获得积分10
15秒前
海孩子完成签到,获得积分10
16秒前
liuyq0501完成签到,获得积分0
20秒前
啦啦啦完成签到 ,获得积分10
20秒前
21秒前
jh完成签到 ,获得积分10
27秒前
66完成签到 ,获得积分10
27秒前
邹江煜完成签到 ,获得积分10
31秒前
Only完成签到 ,获得积分10
32秒前
丫丫完成签到 ,获得积分10
33秒前
jzhou88完成签到,获得积分10
33秒前
36秒前
ES完成签到 ,获得积分0
40秒前
lx完成签到,获得积分10
40秒前
tian发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
43秒前
帕金森完成签到 ,获得积分10
43秒前
46秒前
ken131完成签到 ,获得积分10
47秒前
腰突新人完成签到 ,获得积分10
49秒前
浩浩完成签到 ,获得积分10
50秒前
54秒前
嘻嘻完成签到 ,获得积分10
57秒前
橘子的哈哈怪完成签到,获得积分10
1分钟前
整齐百褶裙完成签到 ,获得积分10
1分钟前
细腻的海露完成签到 ,获得积分10
1分钟前
song完成签到 ,获得积分10
1分钟前
树袋熊和考拉完成签到,获得积分10
1分钟前
77完成签到 ,获得积分10
1分钟前
wildeager完成签到,获得积分10
1分钟前
CH完成签到,获得积分10
1分钟前
萤火虫完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
王蕊完成签到,获得积分10
1分钟前
小羊完成签到 ,获得积分10
1分钟前
jeronimo完成签到,获得积分10
1分钟前
空白完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015603
求助须知:如何正确求助?哪些是违规求助? 3555597
关于积分的说明 11318138
捐赠科研通 3288782
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015