蛋白激酶B
MAPK/ERK通路
信号转导
布拉迪酵母菌
癌症研究
表皮生长因子受体
细胞生长
生物
表皮生长因子
受体酪氨酸激酶
细胞凋亡
酪氨酸激酶
激酶
受体
分子生物学
细胞生物学
益生菌
生物化学
遗传学
细菌
作者
Xinhua Chen,Johannes Fruehauf,Jeffrey D. Goldsmith,Hua Xu,Kianoosh Katchar,Hon–Wai Koon,Dezheng Zhao,Efi Kokkotou,Charalabos Pothoulakis,Ciarán P. Kelly
标识
DOI:10.1053/j.gastro.2009.05.050
摘要
Saccharomyces boulardii (Sb) is a probiotic yeast with anti-inflammatory and anti-microbial activities and has been used for decades in the prevention and treatment of a variety of human gastrointestinal disorders. We reported previously that Sb modulates host inflammatory responses through down-regulation of extracellular signal-regulated kinase (Erk)1/2 activities both in vitro and in vivo. The aim of this study was to identify upstream mediators responsible for extracellular signal-regulated kinase (Erk)1/2 inactivation and to examine the effects of Sb on tumor development in Apc(Min) mice.Signaling studies of colon cancer cells were done by western blot. Cell proliferation was measured by MTS and BrdU assay. Apoptosis was examined by flow cytometry, tunel assay and caspase assay. Apc(Min) mice were orally given Sb for 9 weeks before sacrifice for tumor analysis.We found that the epidermal growth factor receptor (EGFR) was deactivated upon exposure to Sb, leading to inactivation of both the EGFR-Erk and EGFR-Akt pathways. In human colonic cancer cells, Sb prevented EGF-induced proliferation, reduced cell colony formation, and promoted apoptosis. HER-2, HER-3, and insulin-like growth factor-1 receptor were also found to be inactivated by Sb. Oral intake of Sb reduced intestinal tumor growth and dysplasia in C57BL/6J Min/+ (Apc(Min)) mice.Thus, in addition to its anti-inflammatory effects, Sb inhibits EGFR and other receptor tyrosine kinase signaling and thereby may also serve a novel therapeutic or prophylactic role in intestinal neoplasia.
科研通智能强力驱动
Strongly Powered by AbleSci AI