Drug and Drug Candidate Building Block Analysis

药品 药物发现 计算机科学 李宾斯基五定律 候选药物 批准的药物 数据挖掘 计算生物学 药理学 医学 生物信息学 化学 生物 生物信息学 生物化学 基因
作者
Junmei Wang,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:50 (1): 55-67 被引量:94
标识
DOI:10.1021/ci900398f
摘要

Drug likeness analysis is widely used in modern drug design. However, most drug likeness filters, represented by Lipinski’s “Rule of 5”, are based on drugs’ simple structural features and some physiochemical properties. In this study, we conducted thorough structural analyses for two drug datasets. The first dataset, ADDS, is composed of 1240 FDA-approved drugs, and the second drug dataset, EDDS, is a nonredundant collection of FDA-approved drugs and experimental drugs in different phases of clinical trials from several drug databases (6932 entries). For each molecule, all possible fragments were enumerated using a brutal force approach. Three kinds of building blocks, namely, the drug scaffold, ring system, and the small fragment, were identified and ranked according to the frequencies of their occurrence in drug molecules. The major finding is that most top fragments are essentially common for both drug datasets; the top 50 fragments cover 52.6% and 48.6% drugs for ADDS and EDDS, respectively. The identified building blocks were further ranked according to their relative hit rates in the drug datasets and in a screening dataset, which is a nonredundant collection of screening compounds from many resources. In comparison with the previous reports in the field, we have identified many more high-quality building blocks. The results obtained in this study could provide useful hints to medicinal chemists in designing drug-like compounds as well as prioritizing screening libraries to filter out those molecules lack of functional building blocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的天真完成签到,获得积分10
1秒前
2秒前
zzz完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助30
2秒前
3秒前
淡定学姐关注了科研通微信公众号
4秒前
负责的谷云完成签到,获得积分10
5秒前
陶醉枫叶完成签到 ,获得积分10
5秒前
现实的语兰完成签到,获得积分10
6秒前
kaia完成签到,获得积分10
6秒前
7秒前
wanci应助酒笙采纳,获得20
7秒前
SciGPT应助稳重的蛟凤采纳,获得10
7秒前
8秒前
Daisypharma完成签到,获得积分10
8秒前
斯文败类应助yutian采纳,获得10
9秒前
10秒前
SG完成签到,获得积分10
10秒前
ding应助务实的夏菡采纳,获得10
10秒前
大个应助火星上香菇采纳,获得10
10秒前
10秒前
Cx完成签到,获得积分10
11秒前
zzz发布了新的文献求助10
11秒前
大个应助qyw采纳,获得30
11秒前
alex完成签到,获得积分10
11秒前
13秒前
思源应助科研通管家采纳,获得10
13秒前
yhz123应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
自由忆枫应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
Mic应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476