已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Drug and Drug Candidate Building Block Analysis

药品 药物发现 计算机科学 李宾斯基五定律 候选药物 批准的药物 数据挖掘 计算生物学 药理学 医学 生物信息学 化学 生物 生物信息学 生物化学 基因
作者
Junmei Wang,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:50 (1): 55-67 被引量:94
标识
DOI:10.1021/ci900398f
摘要

Drug likeness analysis is widely used in modern drug design. However, most drug likeness filters, represented by Lipinski’s “Rule of 5”, are based on drugs’ simple structural features and some physiochemical properties. In this study, we conducted thorough structural analyses for two drug datasets. The first dataset, ADDS, is composed of 1240 FDA-approved drugs, and the second drug dataset, EDDS, is a nonredundant collection of FDA-approved drugs and experimental drugs in different phases of clinical trials from several drug databases (6932 entries). For each molecule, all possible fragments were enumerated using a brutal force approach. Three kinds of building blocks, namely, the drug scaffold, ring system, and the small fragment, were identified and ranked according to the frequencies of their occurrence in drug molecules. The major finding is that most top fragments are essentially common for both drug datasets; the top 50 fragments cover 52.6% and 48.6% drugs for ADDS and EDDS, respectively. The identified building blocks were further ranked according to their relative hit rates in the drug datasets and in a screening dataset, which is a nonredundant collection of screening compounds from many resources. In comparison with the previous reports in the field, we have identified many more high-quality building blocks. The results obtained in this study could provide useful hints to medicinal chemists in designing drug-like compounds as well as prioritizing screening libraries to filter out those molecules lack of functional building blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
newplayer完成签到,获得积分10
1秒前
研友_VZG7GZ应助薛定谔的猫采纳,获得10
2秒前
3秒前
搜集达人应助ZZZ采纳,获得10
3秒前
嘟嘟嘟嘟完成签到 ,获得积分10
4秒前
9秒前
9秒前
昏睡的砖家完成签到,获得积分10
9秒前
11秒前
Yy完成签到,获得积分20
11秒前
13秒前
婷123完成签到 ,获得积分10
14秒前
斯文败类应助shhyyds采纳,获得10
14秒前
好事发生发布了新的文献求助10
14秒前
Afterlife34发布了新的文献求助10
15秒前
智丹发布了新的文献求助10
17秒前
科研通AI5应助凶凶采纳,获得10
18秒前
酷波er应助典雅冬寒采纳,获得10
18秒前
19秒前
tt完成签到,获得积分10
19秒前
滕雪嘻嘻嘻嘻嘻完成签到,获得积分10
20秒前
风清扬完成签到,获得积分0
20秒前
ZZZ发布了新的文献求助10
23秒前
FashionBoy应助ycc采纳,获得10
23秒前
黄铃铃关注了科研通微信公众号
25秒前
黎明深雪完成签到 ,获得积分10
25秒前
汉城发布了新的文献求助10
26秒前
27秒前
王泽明完成签到,获得积分10
28秒前
阿鱼发布了新的文献求助30
29秒前
ysy完成签到,获得积分10
29秒前
淡然绝山完成签到,获得积分10
31秒前
SciGPT应助无私的梦凡采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
36秒前
CodeCraft应助科研通管家采纳,获得10
36秒前
科目三应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
GPTea应助科研通管家采纳,获得20
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
脑洞疼应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197813
求助须知:如何正确求助?哪些是违规求助? 4378999
关于积分的说明 13637390
捐赠科研通 4234829
什么是DOI,文献DOI怎么找? 2323003
邀请新用户注册赠送积分活动 1321071
关于科研通互助平台的介绍 1271854