去模糊
因式分解
张量代数
订单(交换)
数学
域代数上的
扩展(谓词逻辑)
张量(固有定义)
计算机科学
图像(数学)
应用数学
算法
理论计算机科学
图像处理
纯数学
人工智能
图像复原
财务
经济
当前代数
乔丹代数
程序设计语言
作者
Carla D. Martin,Richard Shafer,Betsy LaRue
摘要
Operations with tensors, or multiway arrays, are increasingly prevalent in many applications involving multiway data analysis. This paper extends a third-order factorization strategy and tensor operations defined in a recent paper [M. E. Kilmer and C. D. Martin, Linear Algebra Appl., 435 (2011), pp. 641--658] to order-$p$ tensors. The extension to order-$p$ tensors is explained in a recursive way but for computational speed is implemented directly using the fast Fourier transform. A major motivation for considering factorization strategies for order-$p$ tensors is to devise new types of algorithms for general order-$p$ tensors which can be used in applications. We conclude with two applications in imaging. The first application is image deblurring, and the second application is video facial recognition. Both applications involve order-4 tensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI