The development of innovative fibre architecture, such as two- and three-dimensional woven fabrics and knitted fabrics, as well as braided structure, provides an attractive form of reinforcement for advanced composites. These new materials require new techniques in analysis and design in order to fully utilize their unique mechanical properties. Several analytical models for predicting the thermoelastic properties of two- and three-dimensional fabric composites are reviewed in this paper. The applicability and limitation of the modelling techniques are examined. Recent advancements in the characterization of mechanical properties of three-dimensional fabric composites are also presented. Overall, three-dimensionally braided, angle interlock and orthogonal interlock fabric composites have demonstrated significant improvement in damage tolerance.