清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Image Super-Resolution Via Sparse Representation

稀疏逼近 人工智能 模式识别(心理学) 计算机科学 图像(数学) K-SVD公司 图像分辨率 代表(政治) 相似性(几何) 分辨率(逻辑) 面子(社会学概念) 计算机视觉 社会学 政治 法学 社会科学 政治学
作者
Jianchao Yang,John Wright,Thomas S. Huang,Yi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (11): 2861-2873 被引量:4401
标识
DOI:10.1109/tip.2010.2050625
摘要

This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助隐形问萍采纳,获得10
3秒前
乐乐应助隐形问萍采纳,获得10
3秒前
科研通AI2S应助隐形问萍采纳,获得10
3秒前
酷波er应助隐形问萍采纳,获得10
3秒前
科目三应助隐形问萍采纳,获得10
3秒前
可爱的函函应助隐形问萍采纳,获得10
3秒前
小二郎应助隐形问萍采纳,获得10
3秒前
科研通AI2S应助隐形问萍采纳,获得10
3秒前
CodeCraft应助隐形问萍采纳,获得10
3秒前
情怀应助隐形问萍采纳,获得10
3秒前
18秒前
34秒前
39秒前
49秒前
gwbk完成签到,获得积分10
1分钟前
2分钟前
3分钟前
川藏客完成签到 ,获得积分10
3分钟前
传奇3应助Cherry采纳,获得10
4分钟前
科研通AI2S应助Diplogen采纳,获得10
4分钟前
迅速的山兰完成签到,获得积分10
5分钟前
鬼见愁应助科研通管家采纳,获得20
5分钟前
5分钟前
彭于晏应助Jia采纳,获得10
5分钟前
英俊的铭应助咸金城采纳,获得10
5分钟前
5分钟前
5分钟前
咸金城发布了新的文献求助10
5分钟前
hzauhzau完成签到 ,获得积分10
6分钟前
wanci应助隐形问萍采纳,获得10
6分钟前
传奇3应助隐形问萍采纳,获得10
6分钟前
bkagyin应助隐形问萍采纳,获得10
6分钟前
FashionBoy应助隐形问萍采纳,获得10
6分钟前
慕青应助隐形问萍采纳,获得10
6分钟前
星辰大海应助隐形问萍采纳,获得10
6分钟前
上官若男应助隐形问萍采纳,获得10
6分钟前
充电宝应助隐形问萍采纳,获得10
6分钟前
科研通AI2S应助隐形问萍采纳,获得10
6分钟前
万能图书馆应助隐形问萍采纳,获得10
6分钟前
6分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213132
求助须知:如何正确求助?哪些是违规求助? 2861948
关于积分的说明 8131243
捐赠科研通 2527901
什么是DOI,文献DOI怎么找? 1361934
科研通“疑难数据库(出版商)”最低求助积分说明 643561
邀请新用户注册赠送积分活动 615885