An incidence density sampling program for nested case-control analyses

统计 入射(几何) 采样(信号处理) 套式病例对照研究 匹配(统计) 数学 逻辑回归 样品(材料) 样本量测定 计量经济学 计算机科学 队列 几何学 化学 滤波器(信号处理) 色谱法 计算机视觉
作者
David B. Richardson
出处
期刊:Occupational and Environmental Medicine [BMJ]
卷期号:61 (12): e59-e59 被引量:208
标识
DOI:10.1136/oem.2004.014472
摘要

Background: The nested case-control design can be a very efficient approach to an epidemiological investigation. In order to obtain unbiased estimates of relative risk, controls should be selected by incidence density sampling, which involves matching each case to a sample of those who are at risk at the time of case occurrence. Methods: This paper presents a simple computer program for incidence density sampling. This program was evaluated using data derived from a cohort study of mortality among workers employed in the nuclear weapons industry. Controls were selected for cases via incidence density sampling; an estimate of the exposure-mortality association was obtained via conditional logistic regression. After 100 iterations of this procedure, the average effect estimate was compared to the risk estimate obtained via proportional hazards regression. The same methods were used to evaluate a program for incidence density sampling that was proposed previously by Pearce in 1989.5 Results: Relative risk estimates obtained from nested case-control analyses conducted using the incidence density sampling program reported in this paper are unbiased. In contrast, the program for incidence density sampling proposed by Pearce5 tended to produce biased relative risk estimates; the magnitude of bias increased with increasing numbers of controls selected per case. Conclusions: The computer program described in this paper offers a simple approach to incidence density sampling for nested case-control analyses with exact matching on attained age and appropriate enumeration of the pool of eligible controls for each case. This method overcomes problems of bias inherent in a previously proposed program for incidence density sampling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助难过的踏歌采纳,获得10
1秒前
Pepsi完成签到,获得积分10
2秒前
Leexxxhaoo完成签到,获得积分10
2秒前
丫丫发布了新的文献求助10
2秒前
shuguang完成签到,获得积分10
2秒前
3秒前
xl1721完成签到,获得积分10
4秒前
4秒前
mukeke发布了新的文献求助10
5秒前
劲秉应助爱听歌笑寒采纳,获得10
5秒前
酷炫的真完成签到,获得积分20
5秒前
隐形曼青应助xinxing采纳,获得10
5秒前
彳亍发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
xl1721发布了新的文献求助30
6秒前
大模型应助小丽酱采纳,获得10
7秒前
Hello应助liuuuuu采纳,获得10
7秒前
10秒前
11秒前
eul完成签到,获得积分10
11秒前
zq发布了新的文献求助10
11秒前
Jasper应助luanzhaohui采纳,获得20
11秒前
12秒前
13秒前
bbczj完成签到,获得积分10
14秒前
lihaoling完成签到,获得积分10
15秒前
16秒前
Sun_Chen发布了新的文献求助10
16秒前
轻松笙发布了新的文献求助10
16秒前
huangweiwei完成签到 ,获得积分20
17秒前
17秒前
18秒前
19秒前
卷aaaa发布了新的文献求助10
19秒前
Owen应助Dagong-xz采纳,获得10
20秒前
wq完成签到,获得积分10
20秒前
朴实的哈密瓜数据线完成签到,获得积分10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465008
求助须知:如何正确求助?哪些是违规求助? 3058334
关于积分的说明 9060957
捐赠科研通 2748604
什么是DOI,文献DOI怎么找? 1507985
科研通“疑难数据库(出版商)”最低求助积分说明 696770
邀请新用户注册赠送积分活动 696429