A numerical study of laminar flame wall quenching

层流 甲烷 燃烧 预混火焰 猝灭(荧光) 层流火焰速度 化学 热力学 机械 材料科学 燃烧室 有机化学 物理 量子力学 荧光
作者
Charles K. Westbrook,Andrew A. Adamczyk,George A. Lavoie
出处
期刊:Combustion and Flame [Elsevier]
卷期号:40: 81-99 被引量:185
标识
DOI:10.1016/0010-2180(81)90112-7
摘要

Laminar flame quenching at the cold wall of a combustion chamber has been studied, using a numerical model to describe the reactive flow. The model combines an unsteady treatment of the fluid mechanics and a detailed chemical kinetic reaction mechanism. Fuels considered included both methane and methanol. Catalytic reactions at the wall surface are not included in the kinetic model. The one-dimensional case of flame propagation perpendicular to the wall was studied. Two reference cases are described in detail for flame quenching at 10 atm pressure and a wall temperature of 300°K with stoichiometric mixtures of methane-air and methanol-air. In each case a conventional laminar flame propagates toward the wall, approaching to within a distance determined by the thermal flame thickness. Chemical kinetic factors, particularly differences between the temperature dependence of radical recombination reactions and conventional chain branching and chain propagation reactions, are shown to be responsible for quenching the flame near the wall. The flame stagnates, but fuel remaining near the wall diffuses out of the boundary region and is rapidly oxidized away from the wall. Subsequent model calculations demonstrate the effects of variations in pressure, fuel-air equivalence ratio, wall temperature, and type of fuel. Computer results from these methane and methanol flame quenching models indicate that the total unburned hydrocarbon content is considerably smaller than is commonly believed and that thermal wall quenching may not be the major source for hydrocarbon emissions from internal combustion engines at near-stoichiometric conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
4秒前
wuta发布了新的文献求助10
5秒前
lxz发布了新的文献求助10
8秒前
8秒前
岁月静好完成签到,获得积分10
8秒前
brody发布了新的文献求助10
9秒前
9秒前
故意的寒安完成签到,获得积分10
10秒前
桐桐应助daiV采纳,获得10
11秒前
11秒前
1412发布了新的文献求助30
11秒前
13秒前
萧水白应助LiLiyounger采纳,获得10
14秒前
14秒前
爱吃榴莲的芒果完成签到 ,获得积分10
15秒前
16秒前
善学以致用应助漠之梦采纳,获得10
16秒前
宓人英完成签到,获得积分10
17秒前
17秒前
Wendy发布了新的文献求助20
18秒前
20秒前
Renly完成签到 ,获得积分10
21秒前
22秒前
潇洒面包完成签到,获得积分20
22秒前
23秒前
酷酷的夜安完成签到 ,获得积分10
24秒前
25秒前
longjiafang发布了新的文献求助30
26秒前
诚心的安珊完成签到 ,获得积分10
26秒前
26秒前
27秒前
港岛妹妹应助zzz采纳,获得10
27秒前
27秒前
27秒前
YDL发布了新的文献求助10
28秒前
KALIdemo158发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241537
求助须知:如何正确求助?哪些是违规求助? 2886025
关于积分的说明 8241378
捐赠科研通 2554547
什么是DOI,文献DOI怎么找? 1382645
科研通“疑难数据库(出版商)”最低求助积分说明 649612
邀请新用户注册赠送积分活动 625279