模型预测控制
能源管理
灵敏度(控制系统)
人工神经网络
控制器(灌溉)
过程(计算)
计算机科学
马尔可夫过程
电动汽车
控制理论(社会学)
预测能力
随机过程
马尔可夫链
隐马尔可夫模型
工程类
功率(物理)
能量(信号处理)
控制(管理)
人工智能
机器学习
数学
哲学
农学
电子工程
生物
物理
操作系统
认识论
统计
量子力学
作者
Chao Sun,Xiaosong Hu,Scott J. Moura,Fuchun Sun
标识
DOI:10.1109/tcst.2014.2359176
摘要
The performance and practicality of predictive energy management in hybrid electric vehicles (HEVs) are highly dependent on the forecast of future vehicular velocities, both in terms of accuracy and computational efficiency. In this brief, we provide a comprehensive comparative analysis of three velocity prediction strategies, applied within a model predictive control framework. The prediction process is performed over each receding horizon, and the predicted velocities are utilized for fuel economy optimization of a power-split HEV. We assume that no telemetry or on-board sensor information is available for the controller, and the actual future driving profile is completely unknown. Basic principles of exponentially varying, stochastic Markov chain, and neural network-based velocity prediction approaches are described. Their sensitivity to tuning parameters is analyzed, and the prediction precision, computational cost, and resultant vehicular fuel economy are compared.
科研通智能强力驱动
Strongly Powered by AbleSci AI