蒙特卡罗方法
旋转
趋同(经济学)
扩散
统计物理学
蒙特卡罗分子模拟
混合蒙特卡罗
动力学蒙特卡罗方法
计算机科学
动态蒙特卡罗方法
物理
算法
数学优化
马尔科夫蒙特卡洛
数学
统计
凝聚态物理
经济
热力学
经济增长
作者
Matt G. Hall,Daniel C. Alexander
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2009-03-09
卷期号:28 (9): 1354-1364
被引量:189
标识
DOI:10.1109/tmi.2009.2015756
摘要
This paper describes a general and flexible Monte- Carlo simulation framework for diffusing spins that generates realistic synthetic data for diffusion magnetic resonance imaging. Similar systems in the literature consider only simple substrates and their authors do not consider convergence and parameter optimization. We show how to run Monte-Carlo simulations within complex irregular substrates. We compare the results of the Monte-Carlo simulation to an analytical model of restricted diffusion to assess precision and accuracy of the generated results. We obtain an optimal combination of spins and updates for a given run time by trading off number of updates in favor of number of spins such that precision and accuracy of sythesized data are both optimized. Further experiments demonstrate the system using a tissue environment that current analytic models cannot capture. This tissue model incorporates swelling, abutting, and deformation. Swelling-induced restriction in the extracellular space due to the effects of abutting cylinders leads to large departures from the predictions of the analytical model, which does not capture these effects. This swelling-induced restriction may be an important mechanism in explaining the changes in apparent diffusion constant observed in the aftermath of acute ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI