计算流体力学
泥石流
离散元法
CFD-DEM公司
碎片
流量(数学)
机械
流体力学
粒子(生态学)
计算机科学
岩土工程
地质学
物理
海洋学
作者
Xingyue Li,Jidong Zhao
摘要
Summary This paper presents a unified modeling framework to investigate the impacts of debris flow on flexible barriers, based on coupled computational fluid dynamics and discrete element method (CFD‐DEM). We consider a debris flow as a mixture of fluid and particles where the fluid and particle phases are modeled by the CFD and the DEM, respectively. The fluid‐particle coupling is considered by the exchange of interaction forces between CFD and DEM calculations. The flexible barrier is simulated by the DEM as a network of bonded particles with remote interactions. The proposed coupled CFD‐DEM approach enables us to conveniently handle the complicated three‐way interactions among the fluid, the particles, and the flexible barrier structure for debris flow impact simulations. The proposed approach is first used to investigate the influences of channel inclination and the volumetric solid fraction in a debris mixture on the impact force, the resultant deformation, and the retained mass in a flexible barrier. The predictions agree well with existing experimental and numerical studies. We further examine the possible failure modes of a flexible barrier under debris flow impact and their underlying mechanisms. The performance of different components in a flexible barrier system, including single wires, double twists and cables, and their load sharing mechanisms, are carefully evaluated. The proposed unified framework offers a novel, promising pathway towards physically based, quantitative analysis and design of flexible barriers for debris flow mitigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI