Schiff-Base/Resin Copolymer under Hypersaline Condition to High-Level N-Doped Porous Carbon Nanosheets for Supercapacitors

材料科学 超级电容器 化学工程 三聚氰胺树脂 碳化 电极 三聚氰胺 共聚物 杂原子 电化学 电解质 碳纤维 纳米技术 复合材料 有机化学 聚合物 化学 扫描电子显微镜 烷基 复合数 物理化学 涂层 工程类
作者
Danfeng Xue,Dazhang Zhu,Mingxian Liu,Hui Duan,Liangchun Li,Xiaolan Chai,Zhiwei Wang,Yaokang Lv,Wei Xiong,Lihua Gan
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:1 (9): 4998-5007 被引量:66
标识
DOI:10.1021/acsanm.8b01125
摘要

We develop a novel strategy to fabricate nitrogen-rich porous carbon nanosheets (N-PCNs) using Schiff-base/resin copolymer under hypersaline medium. Melamine-terephthalaldehyde Schiff-base containning high-bond-energy C=N covalent bonds effectively reduces the loss of the N species during carbonization and thus provides high nitrogen dopants, while the introduction of melamine-formaldehyde resin and ZnCl2 as a solubility enhancing stabilizer plays a key synergistic effect in making the formation of stable polymeric network. Besides, ZnCl2 also serves as a salt-templating and a foaming agent. The resultant N-PCNs have a rich N-doping of 6.55 wt %, a unique nanosheet morphology with a thickness of ∼200 nm, and a large surface area of 1403 m2 g–1 along with rational porous architecture, which affords superior electrochemical performances for a supercapacitor electrode such as high gravimetric capacitances of 362 and 268 F g–1 at 2.0 A g–1 in a three-electrode and a two-electrode system, respectively, using KOH electrolyte. Moreover, the electrode delivers remarkable energy density of 9.2 Wh kg–1 at the power density of 505 W kg–1 and a high cycling stability with 93.8% capacitance retention at 1.0 A g–1 after 10 000 cycles. The present study provides a new avenue for facile and high efficient construction of N-enriched porous carbons for potential supercapacitor application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到,获得积分20
1秒前
2秒前
合适的半青应助靓丽涵易采纳,获得10
2秒前
xuan完成签到,获得积分10
2秒前
2秒前
zhl完成签到,获得积分10
3秒前
大模型应助轻松的雨旋采纳,获得10
3秒前
zhu完成签到,获得积分10
3秒前
ZeroL完成签到 ,获得积分0
3秒前
4秒前
4秒前
Rocky完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
4秒前
有一瓶完成签到,获得积分10
5秒前
称心砖头完成签到,获得积分10
5秒前
汉堡包应助小T儿采纳,获得10
6秒前
狂野书文完成签到,获得积分10
6秒前
爱静静应助otaro采纳,获得40
6秒前
camera发布了新的文献求助10
6秒前
7秒前
7秒前
Hu发布了新的文献求助10
7秒前
iu发布了新的文献求助10
7秒前
好了完成签到,获得积分10
8秒前
8秒前
怡然雨雪完成签到,获得积分10
8秒前
8秒前
科研通AI5应助李唯佳采纳,获得10
8秒前
万能图书馆应助祝雲采纳,获得10
8秒前
我爱学习完成签到 ,获得积分10
9秒前
111完成签到,获得积分10
9秒前
可乐要加冰完成签到,获得积分10
9秒前
深情安青应助郑开司09采纳,获得10
10秒前
娜行发布了新的文献求助10
10秒前
Auoroa完成签到,获得积分10
10秒前
明智之举完成签到,获得积分10
11秒前
赵赵完成签到,获得积分10
11秒前
共享精神应助lalala采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672