Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples

传感器阵列 水溶液中的金属离子 荧光 三元运算 分析化学(期刊) 金属 化学 离子 材料科学 校准曲线 检出限 色谱法 计算机科学 光学 物理 有机化学 机器学习 程序设计语言
作者
Zhe Jiao,Pengfei Zhang,Hongwei Chen,Cong Li,Lina Chen,Hongbo Fan,Faliang Cheng
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:295: 110-116 被引量:57
标识
DOI:10.1016/j.snb.2019.05.059
摘要

The interference of co-existing substances often causes trouble in the analysis of trace metal ions in complex samples, even for highly selective sensors. For this reason, an instant and inexpensive fluorescence sensor array for discrimination of heavy metal ions in complex samples was developed. The sensor array was constructed using four kinds of Mn doped ZnS quantum dots (Mn: ZnS QDs), which were facilely modified with N-Acetyl-cysteine, citric acid, mercaptopropionic acid and triammonium-N-dithiocarboxyiminodiacetate, respectively. For each metal ion, quantitative calibration curves were obtained with the concentration level ranging from 10 to 100 pg/mL (R2 > 0.96). Due to the different quenching effect for Cu, Hg, Ag and Cd on various QDs, the sensor array exhibited a unique pattern of fluorescence variations at a low concentration of 30 pg/ml and can be discriminated successfully by principal component analysis (PCA). The contribution of individual sensors within the array was demonstrated and the obtained information was used to design sensor arrays with two and three sensor elements. The sensor array was also applied to identify the metal ions in unknown mixtures, containing single, binary, ternary and quaternary constitutions. Linear discriminant analysis (LDA) showed that the samples could be well recognized and distinguished. The sensor array was finally applied in water samples with three different concentrations, indicating the co-existing substances rarely influenced discriminatory capacity of the sensor array. Compared to instrumental analysis, this fluorescence sensor array-based method has proven to be more convenient since the nanoparticles can be prepared flexibly according to the property of the target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spike完成签到,获得积分10
刚刚
红色流星发布了新的文献求助10
刚刚
俊逸香岚发布了新的文献求助10
刚刚
1秒前
小乐发布了新的文献求助10
1秒前
ding应助ri_290采纳,获得10
1秒前
刘鑫完成签到,获得积分20
1秒前
graysonup发布了新的文献求助10
2秒前
阿眠Aaaaa完成签到,获得积分10
2秒前
xiesiyuuuer完成签到,获得积分10
3秒前
TY发布了新的文献求助10
3秒前
4秒前
俏皮的一德完成签到,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
CNS完成签到 ,获得积分10
5秒前
6秒前
哈罗发布了新的文献求助10
6秒前
ZDTT完成签到,获得积分10
6秒前
无情的烨霖完成签到,获得积分10
8秒前
DS发布了新的文献求助10
8秒前
天天发布了新的文献求助20
9秒前
浮游应助地理牛马采纳,获得10
9秒前
plain001发布了新的文献求助10
9秒前
认真的人完成签到,获得积分10
10秒前
Friday发布了新的文献求助20
10秒前
丫丫发布了新的文献求助10
11秒前
可爱寻芹完成签到,获得积分10
12秒前
随便发布了新的文献求助10
13秒前
NexusExplorer应助红色流星采纳,获得10
13秒前
13秒前
14秒前
TY完成签到,获得积分10
14秒前
Hong1978发布了新的文献求助10
15秒前
沉静的幼晴完成签到,获得积分10
15秒前
汉堡包应助蓝色的多崎作采纳,获得10
16秒前
李昊完成签到,获得积分10
16秒前
17秒前
Wind应助天天采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680157
求助须知:如何正确求助?哪些是违规求助? 4996720
关于积分的说明 15171995
捐赠科研通 4839973
什么是DOI,文献DOI怎么找? 2593795
邀请新用户注册赠送积分活动 1546757
关于科研通互助平台的介绍 1504791