Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples

传感器阵列 水溶液中的金属离子 荧光 三元运算 分析化学(期刊) 金属 化学 离子 材料科学 校准曲线 检出限 色谱法 计算机科学 光学 有机化学 物理 程序设计语言 机器学习
作者
Zhe Jiao,Pengfei Zhang,Hongwei Chen,Cong Li,Lina Chen,Hongbo Fan,Faliang Cheng
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:295: 110-116 被引量:57
标识
DOI:10.1016/j.snb.2019.05.059
摘要

The interference of co-existing substances often causes trouble in the analysis of trace metal ions in complex samples, even for highly selective sensors. For this reason, an instant and inexpensive fluorescence sensor array for discrimination of heavy metal ions in complex samples was developed. The sensor array was constructed using four kinds of Mn doped ZnS quantum dots (Mn: ZnS QDs), which were facilely modified with N-Acetyl-cysteine, citric acid, mercaptopropionic acid and triammonium-N-dithiocarboxyiminodiacetate, respectively. For each metal ion, quantitative calibration curves were obtained with the concentration level ranging from 10 to 100 pg/mL (R2 > 0.96). Due to the different quenching effect for Cu, Hg, Ag and Cd on various QDs, the sensor array exhibited a unique pattern of fluorescence variations at a low concentration of 30 pg/ml and can be discriminated successfully by principal component analysis (PCA). The contribution of individual sensors within the array was demonstrated and the obtained information was used to design sensor arrays with two and three sensor elements. The sensor array was also applied to identify the metal ions in unknown mixtures, containing single, binary, ternary and quaternary constitutions. Linear discriminant analysis (LDA) showed that the samples could be well recognized and distinguished. The sensor array was finally applied in water samples with three different concentrations, indicating the co-existing substances rarely influenced discriminatory capacity of the sensor array. Compared to instrumental analysis, this fluorescence sensor array-based method has proven to be more convenient since the nanoparticles can be prepared flexibly according to the property of the target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
安静羿关注了科研通微信公众号
2秒前
Sakura完成签到 ,获得积分10
2秒前
Vince完成签到,获得积分10
2秒前
3秒前
3秒前
卡皮巴拉不卡屁完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
123完成签到 ,获得积分10
4秒前
老迟到的冬瓜完成签到,获得积分10
4秒前
Melody完成签到,获得积分10
4秒前
4秒前
Jasper应助愉快的莹采纳,获得10
4秒前
badada完成签到,获得积分10
4秒前
Bao_o_o完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
笨蛋小章完成签到,获得积分10
7秒前
7秒前
朱子煊发布了新的文献求助10
7秒前
DNA完成签到,获得积分10
7秒前
梅菜菜发布了新的文献求助10
7秒前
yzz发布了新的文献求助10
7秒前
领导范儿应助duoduo7采纳,获得10
7秒前
CipherSage应助sunshine采纳,获得10
8秒前
我要发Nature完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助30
8秒前
娜娜酱油发布了新的文献求助10
9秒前
10秒前
Bao_o_o发布了新的文献求助10
10秒前
迷路的问蕊完成签到,获得积分20
10秒前
团结友爱发布了新的文献求助10
11秒前
盐烤香鱼完成签到,获得积分10
11秒前
11秒前
Orange应助Alex采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791