数学
维数(图论)
双线性插值
流量(数学)
克莱恩-戈登方程
数学分析
色散(光学)
数学物理
对称(几何)
纯数学
非线性系统
几何学
物理
量子力学
统计
摘要
We consider long-time evolution of small solutions to general multispeed Klein–Gordon systems on |$\mathbb{R}\times\mathbb{R}^{3}$|. We prove that such solutions are always global and scatter to a linear flow, thus extending partial results obtained previously in Germain [5], Germain and Masmoudi [15] and Ionescu and Pausader [4]. The main new ingredient of our method is an improved linear dispersion estimate exploiting the spherical symmetry of the Klein–Gordon flow, and a corresponding bilinear oscillatory integral estimate.
科研通智能强力驱动
Strongly Powered by AbleSci AI