Performance Evaluation of Feature Extraction Techniques in Multi-Layer Based Fingerprint Ethnicity Recognition System

人工智能 模式识别(心理学) 主成分分析 线性判别分析 特征提取 核主成分分析 指纹(计算) 数学 生物识别 计算机科学 核方法 支持向量机
作者
Halleluyah O. Aworinde,A. O. Afolabi,A. S. Falohun,Olufunso Adebola Adedeji
出处
期刊:Asian Journal of Research in Computer Science [Sciencedomain International]
卷期号:: 1-9 被引量:2
标识
DOI:10.9734/ajrcos/2019/v3i130084
摘要

This paper is set out to evaluate the performance of feature extraction techniques that can determine ethnicity of an individual using fingerprint biometric technique and deep learning approach. Hence, fingerprint images of one thousand and fifty-four (1054) persons of three different ethnic groups (Yoruba, Igbo and Middle-Belt) in Nigeria were captured. Kernel Principal Component Analysis (K-PCA) and Kernel Linear Discriminant Analysis (KLDA) were used independently for feature extraction while Convolutional Neural Network (CNN) was used for supervised learning of the features and classification. The results showed that out of sixty (60) individual fingerprints tested, eight (8) were classified as Yoruba, forty-eight (48) as Igbo and four (4) as Hausa. The Recognition Accuracy for K-PCA was 93.97% and KLDA was 97.26%. For Average Recognition time, K-PCA used 9.98seconds while KLDA used 10.02seconds. The memory space utilized by K-PCA was 94.57KB while KLDA utilized 52.17KB. T-Test paired sample statistics was carried out on the result obtained; the outcome presented reveal that KLDA outperformed the K-PCA technique in terms of Recognition Accuracy. The relationship between the average recognition time () and threshold value () was found to be polynomial of order four (4) with a high correlation coefficient for KPCA and polynomial of order three (3) with a high correlation coefficient for KLDA. In terms of computation time analysis, KLDA is computationally more expensive than KPCA by reason of processing speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯梦梦完成签到,获得积分10
5秒前
王i发布了新的文献求助10
5秒前
香蕉乌冬面完成签到,获得积分10
7秒前
ranranran发布了新的文献求助10
7秒前
hannah完成签到,获得积分10
7秒前
fffffffq完成签到,获得积分10
7秒前
8秒前
Chai发布了新的文献求助10
8秒前
10秒前
无心的安青完成签到 ,获得积分10
11秒前
13秒前
Wings完成签到,获得积分10
14秒前
ynwamo完成签到,获得积分10
16秒前
别偷我增肌粉完成签到,获得积分10
16秒前
wuhoo完成签到,获得积分10
16秒前
风萧萧完成签到,获得积分10
18秒前
niandon完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
自觉平露完成签到,获得积分10
25秒前
小恐龙飞飞完成签到 ,获得积分10
27秒前
wang发布了新的文献求助10
28秒前
Accept发布了新的文献求助10
28秒前
叶黄戍发布了新的文献求助10
29秒前
ranranran完成签到,获得积分10
29秒前
30秒前
金蕊完成签到,获得积分10
31秒前
kls完成签到,获得积分10
31秒前
小刘完成签到,获得积分10
31秒前
31秒前
SciGPT应助33采纳,获得10
32秒前
Jyy77完成签到 ,获得积分10
32秒前
33秒前
hajy完成签到 ,获得积分10
34秒前
一笑奈何完成签到,获得积分10
35秒前
善良安梦发布了新的文献求助30
37秒前
小虎发布了新的文献求助10
37秒前
叶黄戍完成签到,获得积分10
37秒前
Akim应助家嵩采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143731
求助须知:如何正确求助?哪些是违规求助? 2795219
关于积分的说明 7813671
捐赠科研通 2451210
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400