Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images

光学相干层析成像 人工智能 计算机科学 模式识别(心理学) 卷积神经网络 分类器(UML) 视网膜 分割 计算机辅助诊断 眼科 医学
作者
Zhongyang Sun,Yankui Sun
出处
期刊:Journal of Biomedical Optics [SPIE]
卷期号:24 (05): 1-1 被引量:4
标识
DOI:10.1117/1.jbo.24.5.056003
摘要

In conventional retinal region detection methods for optical coherence tomography (OCT) images, many parameters need to be set manually, which is often detrimental to their generalizability. We present a scheme to detect retinal regions based on fully convolutional networks (FCN) for automatic diagnosis of abnormal maculae in OCT images. The FCN model is trained on 900 labeled age-related macular degeneration (AMD), diabetic macular edema (DME) and normal (NOR) OCT images. Its segmentation accuracy is validated and its effectiveness in recognizing abnormal maculae in OCT images is tested and compared with traditional methods, by using the spatial pyramid matching based on sparse coding (ScSPM) classifier and Inception V3 classifier on two datasets: Duke dataset and our clinic dataset. In our clinic dataset, we randomly selected half of the B-scans of each class (300 AMD, 300 DME, and 300 NOR) for training classifier and the rest (300 AMD, 300 DME, and 300 NOR) for testing with 10 repetitions. Average accuracy, sensitivity, and specificity of 98.69%, 98.03%, and 99.01% are obtained by using ScSPM classifier, and those of 99.69%, 99.53%, and 99.77% are obtained by using Inception V3 classifier. These two classification algorithms achieve 100% classification accuracy when directly applied to Duke dataset, where all the 45 OCT volumes are used as test set. Finally, FCN model with or without flattening and cropping and its influence on classification performance are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空_完成签到 ,获得积分10
1秒前
售后延长完成签到,获得积分10
1秒前
1秒前
suo精大王完成签到,获得积分10
1秒前
2秒前
mi发布了新的文献求助20
3秒前
虚心谷梦完成签到,获得积分10
4秒前
秋秋发布了新的文献求助20
4秒前
houdaibang完成签到,获得积分10
4秒前
夜雨声烦发布了新的文献求助10
6秒前
qz完成签到,获得积分10
6秒前
linghanlan发布了新的文献求助10
6秒前
7秒前
7秒前
今后应助文艺的从波采纳,获得10
8秒前
香蕉觅云应助WZQ采纳,获得10
8秒前
Sword发布了新的文献求助10
11秒前
科研通AI5应助苏小福采纳,获得10
12秒前
13秒前
田tttt发布了新的文献求助10
13秒前
情怀应助售后延长采纳,获得10
14秒前
mogugu完成签到,获得积分10
14秒前
duanjun123完成签到,获得积分10
15秒前
学术卷心菜完成签到,获得积分10
15秒前
16秒前
18秒前
CodeCraft应助linghanlan采纳,获得10
18秒前
Dobby发布了新的文献求助10
18秒前
歪歪完成签到,获得积分10
19秒前
cmuzf完成签到,获得积分10
20秒前
21秒前
21秒前
李健应助陈晓真采纳,获得10
21秒前
22秒前
Elvira完成签到,获得积分10
22秒前
文艺君浩发布了新的文献求助50
23秒前
bkagyin应助zyb采纳,获得10
23秒前
惠飞薇完成签到 ,获得积分10
23秒前
24秒前
云生完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728018
求助须知:如何正确求助?哪些是违规求助? 3273140
关于积分的说明 9979991
捐赠科研通 2988518
什么是DOI,文献DOI怎么找? 1639676
邀请新用户注册赠送积分活动 778870
科研通“疑难数据库(出版商)”最低求助积分说明 747819