计算机科学
期限(时间)
领域(数学)
人工智能
智能交通系统
机器学习
技术预测
数据科学
工程类
运输工程
数学
量子力学
物理
纯数学
作者
Yaguang Li,Cyrus Shahabi
出处
期刊:Sigspatial Special
日期:2018-06-05
卷期号:10 (1): 3-9
被引量:68
标识
DOI:10.1145/3231541.3231544
摘要
Short-term traffic forecasting is a vital part of intelligent transportation systems. Recently, the combination of unprecedented data availability and the repaid development of machine learning techniques have brought on immense advancement in this field. In this paper, we aim to provide a brief overview of machine learning approaches for short-term traffic forecasting to facilitate research in related fields. We first introduce traffic forecasting and the challenges, and then introduce different approaches for modeling the temporal and/or spatial dependencies. Finally, we discuss several important directions for the future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI