The zeolitic imidazole framework (ZIF-8) dotted chitosan (CS) nanocomposites (ZIF-8@CS) were fabricated via in-situ growth method. The morphology, structure and chemical state of ZIF-8@CS were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform IR spectroscopy (FTIR) and X-ray diffraction (XRD). The adsorption behavior of ZIF-8@CS composites on Congo Red (CR) in aqueous solution was systematically investigated. The adsorption isotherm data showed that the adsorption of CR by ZIF-8@CS was single-layer adsorption, which was consistent with the Langmuir isotherm model. The maximum adsorption capacity of ZIF-8@CS was 922 mg/g. The kinetics parameters were in accord with pseudo-second-order equation, which implied that the adsorption rate was mainly controlled by the chemisorption mechanism. The removal of CR was attributed to the participation of hydrogen bonds, electrostatic interactions, π-π conjugation and zinc coordination effects.