材料科学
热固性聚合物
阻燃剂
复合材料
刷子
极限氧指数
环氧树脂
聚磷酸铵
聚氨酯
热导率
化学工程
热解
工程类
烧焦
作者
Yang Leng,Miaojun Xu,Yue Sun,Bin Li
摘要
Fire safety and thermal dissipation performance of epoxy resins thermosets were critical for its application in key fields such as electronic devices. The simultaneous improvement of flame retardant and thermal conductivity properties were still a challenge. Herein, ammonium polyphosphate (APP) was firstly encapsulated with 5‐wt% epoxy resins based on APP and then surface grafted with polyurethane polymer chain, and the resulting APP with core‐shell‐brush structure was constructed. Finally, the multiwalled carbon nanotube (MWCNT) was assembled in the intervals of polymer brush on APP surface, and the prepared filler was defined as MF‐APP. Its chemical structure and morphologies were characterized and confirmed. The wettability of MF‐APP was evaluated by water contact angles tests (WCA) and MF‐APP exhibited hydrophobic property with the WCA of 138°. When 9‐wt% MF‐APP was incorporated into EP thermosets, the thermal conductive value of EP/MF‐APP achieved 1.02 Wm −1 K −1 , and the MWCNTs concentration was only 1.8 wt% in thermosets. Compared with the previous work, the prepared EP/MF‐APP thermosets exhibited outstanding thermal conductive efficiency because of the homogeneously distribution of MWCNTs. Moreover, the samples fulfilled UL‐94 V‐0 grade during vertical burning tests with the limiting oxygen index of 30.8%. As a result, the thermal conductivity and flame retardancy of EP thermosets were simultaneously enhanced with a relatively low addition amount of MF‐APP, which would bring more chance for wider application of EP thermosets in key fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI