A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma

医学 磁共振成像 肝细胞癌 无线电技术 列线图 放射科 队列 肿瘤科 内科学
作者
Rui Zhang,Lei Xu,Xue Wen,Jiahui Zhang,Pengfei Yang,Lixia Zhang,Xing Xue,Xiaoli Wang,Qiang Huang,Chuangen Guo,Yanjun Shi,Tianye Niu,Feng Chen
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:9 (9): 1503-1515 被引量:69
标识
DOI:10.21037/qims.2019.09.07
摘要

We aimed to develop and validate a nomogram combining bi-regional radiomics features from multimodal magnetic resonance imaging (MRI) and clinicoradiological characteristics to preoperatively predict microvascular invasion (MVI) of hepatocellular carcinoma (HCC).A total of 267 HCC patients were divided into training (n=194) and validation (n=73) cohorts according to MRI data. Bi-regional features were extracted from whole tumors and peritumoral regions in multimodal MRI. The minimum redundancy maximum relevance (mRMR) algorithm was applied to select features and build signatures. The predictive performance of the optimal radiomics signature was further evaluated within subgroups defined by tumor size and alpha fetoprotein (AFP) level. Then, a radiomics nomogram including the optimal radiomics signature, radiographic descriptors, and clinical variables was developed using multivariable regression. The nomogram performance was evaluated based on its discrimination, calibration, and clinical utility.The fusion radiomics signature derived from triphasic dynamic contrast-enhanced (DCE) MR images can effectively classify MVI and non-MVI HCC patients, with an AUC of 0.784 (95% CI: 0.719-0.840) in the training cohort and 0.820 (95% CI: 0.713-0.900) in the validation cohort. The fusion radiomics signature also performed well in the subgroups defined by the two risk factors, respectively. The nomogram, consisting of the fusion radiomics signature, arterial peritumoral enhancement, and AFP level, outperformed the clinicoradiological prediction model in the validation cohort (AUCs: 0.858 vs. 0.729; P=0.022), fitting well in the calibration curves (P>0.05). Decision curves confirmed the clinical utility of the nomogram.The radiomics nomogram can serve as a visual predictive tool for MVI in HCCs, and thus assist clinicians in selecting optimal treatment strategies to improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Qi采纳,获得10
1秒前
ASD完成签到,获得积分10
1秒前
冷静梦之发布了新的文献求助10
1秒前
2秒前
rues011完成签到,获得积分10
2秒前
槿一完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
KM完成签到,获得积分10
8秒前
LLLLLJJXX完成签到,获得积分20
10秒前
11秒前
11秒前
11秒前
山海风完成签到,获得积分10
12秒前
12秒前
13秒前
郭嘉仪发布了新的文献求助10
13秒前
^O^完成签到,获得积分10
13秒前
MaoSen完成签到,获得积分10
14秒前
Haibrar完成签到 ,获得积分10
14秒前
15秒前
minjeong发布了新的文献求助10
15秒前
寻359发布了新的文献求助10
16秒前
言宴发布了新的文献求助10
16秒前
泡泡完成签到 ,获得积分10
16秒前
16秒前
16秒前
沉默岩发布了新的文献求助10
17秒前
英姑应助单薄紫菱采纳,获得10
18秒前
wh发布了新的文献求助100
19秒前
winklove完成签到,获得积分10
19秒前
19秒前
le完成签到,获得积分20
19秒前
瘦瘦的艳发布了新的文献求助10
20秒前
怪蜀黍发布了新的文献求助10
20秒前
1238125446发布了新的文献求助10
20秒前
814791097完成签到,获得积分10
22秒前
22秒前
ding应助言宴采纳,获得10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114