A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma

医学 磁共振成像 肝细胞癌 无线电技术 列线图 放射科 队列 肿瘤科 内科学
作者
Rui Zhang,Lei Xu,Xue Wen,Jiahui Zhang,Pengfei Yang,Lixia Zhang,Xing Xue,Xiaoli Wang,Qiang Huang,Chuangen Guo,Yanjun Shi,Tianye Niu,Feng Chen
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:9 (9): 1503-1515 被引量:69
标识
DOI:10.21037/qims.2019.09.07
摘要

We aimed to develop and validate a nomogram combining bi-regional radiomics features from multimodal magnetic resonance imaging (MRI) and clinicoradiological characteristics to preoperatively predict microvascular invasion (MVI) of hepatocellular carcinoma (HCC).A total of 267 HCC patients were divided into training (n=194) and validation (n=73) cohorts according to MRI data. Bi-regional features were extracted from whole tumors and peritumoral regions in multimodal MRI. The minimum redundancy maximum relevance (mRMR) algorithm was applied to select features and build signatures. The predictive performance of the optimal radiomics signature was further evaluated within subgroups defined by tumor size and alpha fetoprotein (AFP) level. Then, a radiomics nomogram including the optimal radiomics signature, radiographic descriptors, and clinical variables was developed using multivariable regression. The nomogram performance was evaluated based on its discrimination, calibration, and clinical utility.The fusion radiomics signature derived from triphasic dynamic contrast-enhanced (DCE) MR images can effectively classify MVI and non-MVI HCC patients, with an AUC of 0.784 (95% CI: 0.719-0.840) in the training cohort and 0.820 (95% CI: 0.713-0.900) in the validation cohort. The fusion radiomics signature also performed well in the subgroups defined by the two risk factors, respectively. The nomogram, consisting of the fusion radiomics signature, arterial peritumoral enhancement, and AFP level, outperformed the clinicoradiological prediction model in the validation cohort (AUCs: 0.858 vs. 0.729; P=0.022), fitting well in the calibration curves (P>0.05). Decision curves confirmed the clinical utility of the nomogram.The radiomics nomogram can serve as a visual predictive tool for MVI in HCCs, and thus assist clinicians in selecting optimal treatment strategies to improve clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sasa完成签到,获得积分10
刚刚
Orange应助眼里还有光采纳,获得10
1秒前
小蘑菇应助伶俐的夜梦采纳,获得30
1秒前
weiyi完成签到,获得积分20
1秒前
ff发布了新的文献求助10
2秒前
Fortune完成签到,获得积分10
2秒前
邹秋雨发布了新的文献求助10
2秒前
123lx完成签到 ,获得积分10
2秒前
3秒前
轻松完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
一一应助小蓝采纳,获得10
5秒前
6秒前
开心秋天完成签到 ,获得积分10
6秒前
jjgod发布了新的文献求助10
6秒前
CherylZhao完成签到,获得积分10
7秒前
Eilleen发布了新的文献求助10
7秒前
何静发布了新的文献求助10
7秒前
8秒前
超级的鞅发布了新的文献求助10
8秒前
斑其发布了新的文献求助10
8秒前
10秒前
10秒前
智慧发布了新的文献求助30
10秒前
DTS发布了新的文献求助10
11秒前
YI_JIA_YI完成签到,获得积分10
11秒前
小痞子完成签到 ,获得积分10
11秒前
苗灵雁完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
善学以致用应助超级的鞅采纳,获得10
12秒前
猪猪hero应助elang采纳,获得10
13秒前
weiyi发布了新的文献求助10
14秒前
佩琪完成签到,获得积分10
14秒前
包容秋珊发布了新的文献求助10
14秒前
缥缈的涵菡完成签到 ,获得积分10
15秒前
冷酷的溜溜梅完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802