A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma

医学 磁共振成像 肝细胞癌 无线电技术 列线图 放射科 队列 肿瘤科 内科学
作者
Rui Zhang,Lei Xu,Xue Wen,Jiahui Zhang,Pengfei Yang,Lixia Zhang,Xing Xue,Xiaoli Wang,Qiang Huang,Chuangen Guo,Yanjun Shi,Tianye Niu,Feng Chen
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:9 (9): 1503-1515 被引量:69
标识
DOI:10.21037/qims.2019.09.07
摘要

We aimed to develop and validate a nomogram combining bi-regional radiomics features from multimodal magnetic resonance imaging (MRI) and clinicoradiological characteristics to preoperatively predict microvascular invasion (MVI) of hepatocellular carcinoma (HCC).A total of 267 HCC patients were divided into training (n=194) and validation (n=73) cohorts according to MRI data. Bi-regional features were extracted from whole tumors and peritumoral regions in multimodal MRI. The minimum redundancy maximum relevance (mRMR) algorithm was applied to select features and build signatures. The predictive performance of the optimal radiomics signature was further evaluated within subgroups defined by tumor size and alpha fetoprotein (AFP) level. Then, a radiomics nomogram including the optimal radiomics signature, radiographic descriptors, and clinical variables was developed using multivariable regression. The nomogram performance was evaluated based on its discrimination, calibration, and clinical utility.The fusion radiomics signature derived from triphasic dynamic contrast-enhanced (DCE) MR images can effectively classify MVI and non-MVI HCC patients, with an AUC of 0.784 (95% CI: 0.719-0.840) in the training cohort and 0.820 (95% CI: 0.713-0.900) in the validation cohort. The fusion radiomics signature also performed well in the subgroups defined by the two risk factors, respectively. The nomogram, consisting of the fusion radiomics signature, arterial peritumoral enhancement, and AFP level, outperformed the clinicoradiological prediction model in the validation cohort (AUCs: 0.858 vs. 0.729; P=0.022), fitting well in the calibration curves (P>0.05). Decision curves confirmed the clinical utility of the nomogram.The radiomics nomogram can serve as a visual predictive tool for MVI in HCCs, and thus assist clinicians in selecting optimal treatment strategies to improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕照古风发布了新的文献求助10
刚刚
科研通AI5应助暮葵采纳,获得10
1秒前
打打应助思维隋采纳,获得30
2秒前
dachang关注了科研通微信公众号
2秒前
情怀应助123采纳,获得10
4秒前
penny完成签到,获得积分10
4秒前
想毕业完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
领导范儿应助dbl采纳,获得10
7秒前
7秒前
George完成签到,获得积分10
8秒前
所所应助tagate采纳,获得10
10秒前
Bo0108完成签到,获得积分10
10秒前
10秒前
月神满月完成签到,获得积分10
11秒前
gej发布了新的文献求助10
13秒前
kiki完成签到,获得积分20
13秒前
14秒前
司空豁发布了新的文献求助30
14秒前
宰宰小熊发布了新的文献求助10
14秒前
14秒前
15秒前
Rain发布了新的文献求助10
16秒前
16秒前
17秒前
kiki发布了新的文献求助10
18秒前
xyx发布了新的文献求助10
19秒前
ding应助Duxian采纳,获得10
20秒前
20秒前
21秒前
老王发布了新的文献求助10
21秒前
可爱的函函应助Rain采纳,获得10
21秒前
852应助害怕的板凳采纳,获得10
22秒前
22秒前
彩色青雪发布了新的文献求助20
22秒前
23秒前
24秒前
思维隋发布了新的文献求助30
24秒前
丘比特应助LAIJINSHENG采纳,获得10
25秒前
英姑应助ZHANG采纳,获得10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160