A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma

医学 磁共振成像 肝细胞癌 无线电技术 列线图 放射科 队列 肿瘤科 内科学
作者
Rui Zhang,Lei Xu,Xue Wen,Jiahui Zhang,Pengfei Yang,Lixia Zhang,Xing Xue,Xiaoli Wang,Qiang Huang,Chuangen Guo,Yanjun Shi,Tianye Niu,Feng Chen
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:9 (9): 1503-1515 被引量:69
标识
DOI:10.21037/qims.2019.09.07
摘要

We aimed to develop and validate a nomogram combining bi-regional radiomics features from multimodal magnetic resonance imaging (MRI) and clinicoradiological characteristics to preoperatively predict microvascular invasion (MVI) of hepatocellular carcinoma (HCC).A total of 267 HCC patients were divided into training (n=194) and validation (n=73) cohorts according to MRI data. Bi-regional features were extracted from whole tumors and peritumoral regions in multimodal MRI. The minimum redundancy maximum relevance (mRMR) algorithm was applied to select features and build signatures. The predictive performance of the optimal radiomics signature was further evaluated within subgroups defined by tumor size and alpha fetoprotein (AFP) level. Then, a radiomics nomogram including the optimal radiomics signature, radiographic descriptors, and clinical variables was developed using multivariable regression. The nomogram performance was evaluated based on its discrimination, calibration, and clinical utility.The fusion radiomics signature derived from triphasic dynamic contrast-enhanced (DCE) MR images can effectively classify MVI and non-MVI HCC patients, with an AUC of 0.784 (95% CI: 0.719-0.840) in the training cohort and 0.820 (95% CI: 0.713-0.900) in the validation cohort. The fusion radiomics signature also performed well in the subgroups defined by the two risk factors, respectively. The nomogram, consisting of the fusion radiomics signature, arterial peritumoral enhancement, and AFP level, outperformed the clinicoradiological prediction model in the validation cohort (AUCs: 0.858 vs. 0.729; P=0.022), fitting well in the calibration curves (P>0.05). Decision curves confirmed the clinical utility of the nomogram.The radiomics nomogram can serve as a visual predictive tool for MVI in HCCs, and thus assist clinicians in selecting optimal treatment strategies to improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
美丽老三完成签到,获得积分20
2秒前
开心元霜完成签到,获得积分10
2秒前
Ivy完成签到,获得积分10
2秒前
2秒前
3秒前
哦哦哦发布了新的文献求助10
4秒前
yongyou完成签到,获得积分20
5秒前
6秒前
美丽老三发布了新的文献求助10
6秒前
6秒前
hdcf发布了新的文献求助10
9秒前
玉玉发布了新的文献求助10
9秒前
aldehyde应助XYL采纳,获得10
9秒前
希望天下0贩的0应助惠胜采纳,获得10
10秒前
10秒前
倪倪发布了新的文献求助10
11秒前
12秒前
小郑发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
hanshiyi完成签到,获得积分10
16秒前
斯文败类应助yongyou采纳,获得10
16秒前
17秒前
chansey发布了新的文献求助10
17秒前
XYL发布了新的文献求助10
18秒前
所所应助白色梨花采纳,获得10
20秒前
wanci应助蟪蛄鸪采纳,获得10
20秒前
hdcf发布了新的文献求助10
21秒前
WangXiaoze发布了新的文献求助10
21秒前
21秒前
顾矜应助日笙采纳,获得10
21秒前
黎夜完成签到,获得积分10
22秒前
机灵的怀绿完成签到,获得积分10
24秒前
my驳回了科目三应助
24秒前
25秒前
26秒前
可爱奇异果完成签到 ,获得积分10
26秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320711
求助须知:如何正确求助?哪些是违规求助? 4462526
关于积分的说明 13887138
捐赠科研通 4353537
什么是DOI,文献DOI怎么找? 2391240
邀请新用户注册赠送积分活动 1384892
关于科研通互助平台的介绍 1354655