A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma

医学 磁共振成像 肝细胞癌 无线电技术 列线图 放射科 队列 肿瘤科 内科学
作者
Rui Zhang,Lei Xu,Xue Wen,Jiahui Zhang,Pengfei Yang,Lixia Zhang,Xing Xue,Xiaoli Wang,Qiang Huang,Chuangen Guo,Yanjun Shi,Tianye Niu,Feng Chen
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:9 (9): 1503-1515 被引量:69
标识
DOI:10.21037/qims.2019.09.07
摘要

We aimed to develop and validate a nomogram combining bi-regional radiomics features from multimodal magnetic resonance imaging (MRI) and clinicoradiological characteristics to preoperatively predict microvascular invasion (MVI) of hepatocellular carcinoma (HCC).A total of 267 HCC patients were divided into training (n=194) and validation (n=73) cohorts according to MRI data. Bi-regional features were extracted from whole tumors and peritumoral regions in multimodal MRI. The minimum redundancy maximum relevance (mRMR) algorithm was applied to select features and build signatures. The predictive performance of the optimal radiomics signature was further evaluated within subgroups defined by tumor size and alpha fetoprotein (AFP) level. Then, a radiomics nomogram including the optimal radiomics signature, radiographic descriptors, and clinical variables was developed using multivariable regression. The nomogram performance was evaluated based on its discrimination, calibration, and clinical utility.The fusion radiomics signature derived from triphasic dynamic contrast-enhanced (DCE) MR images can effectively classify MVI and non-MVI HCC patients, with an AUC of 0.784 (95% CI: 0.719-0.840) in the training cohort and 0.820 (95% CI: 0.713-0.900) in the validation cohort. The fusion radiomics signature also performed well in the subgroups defined by the two risk factors, respectively. The nomogram, consisting of the fusion radiomics signature, arterial peritumoral enhancement, and AFP level, outperformed the clinicoradiological prediction model in the validation cohort (AUCs: 0.858 vs. 0.729; P=0.022), fitting well in the calibration curves (P>0.05). Decision curves confirmed the clinical utility of the nomogram.The radiomics nomogram can serve as a visual predictive tool for MVI in HCCs, and thus assist clinicians in selecting optimal treatment strategies to improve clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小Z发布了新的文献求助10
1秒前
WYT发布了新的文献求助10
1秒前
1秒前
科研完成签到,获得积分10
1秒前
韩笑发布了新的文献求助10
1秒前
韩1234发布了新的文献求助10
2秒前
拉长的鼠标完成签到,获得积分20
2秒前
Mrsummer发布了新的文献求助10
2秒前
QYN完成签到,获得积分10
2秒前
黎明发布了新的文献求助10
2秒前
qqq发布了新的文献求助10
3秒前
3秒前
无花果应助xiaomeng采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助燕海雪采纳,获得10
3秒前
cara完成签到,获得积分10
3秒前
王括发布了新的文献求助10
3秒前
烟花应助工作还是工作采纳,获得10
4秒前
4秒前
kysl完成签到 ,获得积分10
5秒前
虚幻诗柳完成签到,获得积分10
5秒前
xky200125完成签到 ,获得积分10
5秒前
5秒前
SHAO完成签到,获得积分0
5秒前
啊啊啊啊发布了新的文献求助10
6秒前
嘎嘎嘎发布了新的文献求助10
6秒前
自由保温杯应助michael采纳,获得30
7秒前
7秒前
负责的井发布了新的文献求助10
7秒前
夕荀发布了新的文献求助10
7秒前
林祎民完成签到 ,获得积分10
8秒前
Lmding发布了新的文献求助10
8秒前
8秒前
安静的剑发布了新的文献求助10
8秒前
titi发布了新的文献求助10
8秒前
8秒前
_Dearlxy发布了新的文献求助10
9秒前
jiwn完成签到,获得积分10
9秒前
丹丹子完成签到 ,获得积分10
9秒前
踏雪发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006