静脉注射
循环肿瘤细胞
转移
液体活检
微流控
癌症
肿瘤微环境
原发性肿瘤
分离(微生物学)
外渗
癌症研究
癌症转移
医学
生物
纳米技术
病理
生物信息学
内科学
材料科学
作者
Xiawei Xu,Zhenqi Jiang,Jing Wang,Yong Ren,Aiguo Wu
标识
DOI:10.1002/elps.201900402
摘要
Abstract The prognosis of malignant tumors is challenged by insufficient means to effectively detect tumors at early stage. Liquid biopsy using circulating tumor cells (CTCs) as biomarkers demonstrates a promising solution to tackle the challenge, because CTCs play a critical role in cancer metastatic process via intravasation, circulation, extravasation, and formation of secondary tumor. However, the effectiveness of the solution is compromised by rarity, heterogeneity, and vulnerability associated with CTCs. Among a plethora of novel approaches for CTC isolation and enrichment, microfluidics leads to isolation and detection of CTCs in a cost‐effective and operation‐friendly way. Development of microfluidics also makes it feasible to model the cancer metastasis in vitro using a microfluidic system to mimick the in vivo microenvironment, thereby enabling analysis and monitor of tumor metastasis. This paper aims to review the latest advances for exploring the dual‐roles microfluidics has played in early cancer diagnosis via CTC isolation and investigating the role of CTCs in cancer metastasis; the merits and drawbacks for dominating microfluidics‐based CTC isolation methods are discussed; biomimicking cancer metastasis using microfluidics are presented with example applications on modelling of tumor microenvironment, tumor cell dissemination, tumor migration, and tumor angiogenesis. The future perspectives and challenges are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI