Molecular streaming and its voltage control in {\aa}ngstr\"om scale channels

频道(广播) 计算机科学 电压 物理 门控 拓扑(电路)
作者
Timothée Mouterde,Ashok Keerthi,Anthony R. Poggioli,S. A. Dar,Alessandro Siria,Andre K. Geim,Lydéric Bocquet,Boya Radha
出处
期刊:arXiv: Soft Condensed Matter 被引量:87
标识
DOI:10.1038/s41586-019-0961-5
摘要

The field of nanofluidics has shown considerable progress over the past decade thanks to key instrumental advances, leading to the discovery of a number of exotic transport phenomena for fluids and ions under extreme confinement. Recently, van der Waals assembly of 2D materials allowed fabrication of artificial channels with angstr\om-scale precision. This ultimate confinement to the true molecular scale revealed unforeseen behaviour for both mass and ionic transport. In this work, we explore pressure-driven streaming in such molecular-size slits and report a new electro-hydrodynamic effect under coupled pressure and electric force. It takes the form of a transistor-like response of the pressure induced ionic streaming: an applied bias of a fraction of a volt results in an enhancement of the streaming mobility by up to 20 times. The gating effect is observed with both graphite and boron nitride channels but exhibits marked material-dependent features. Our observations are rationalized by a theoretical framework for the flow dynamics, including the frictional interaction of water, ions and the confining surfaces as a key ingredient. The material dependence of the voltage modulation can be traced back to a contrasting molecular friction on graphene and boron nitride. The highly nonlinear transport under molecular-scale confinement offers new routes to actively control molecular and ion transport and design elementary building blocks for artificial ionic machinery, such as ion pumps. Furthermore, it provides a versatile platform to explore electro-mechanical couplings potentially at play in recently discovered mechanosensitive ionic channels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺过客发布了新的文献求助10
1秒前
FashionBoy应助晚风采纳,获得10
2秒前
2秒前
2秒前
Yaphet完成签到,获得积分10
2秒前
HJJHJH发布了新的文献求助10
3秒前
希望天下0贩的0应助zzz采纳,获得10
3秒前
鱼饼发布了新的文献求助10
3秒前
77完成签到 ,获得积分10
3秒前
Jasper应助Evan采纳,获得10
5秒前
5秒前
lilianan完成签到,获得积分10
5秒前
创新发布了新的文献求助10
5秒前
5秒前
5秒前
丘比特应助fuchao采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
小蘑菇应助快乐的板凳采纳,获得10
6秒前
阿达完成签到 ,获得积分10
6秒前
6秒前
daidai发布了新的文献求助10
6秒前
Tbo发布了新的文献求助10
6秒前
凌千颂发布了新的文献求助10
7秒前
你在说什么完成签到,获得积分10
7秒前
狠狠搞科研完成签到 ,获得积分10
7秒前
ww发布了新的文献求助20
8秒前
火星上的半梅完成签到,获得积分10
8秒前
9秒前
kennedy完成签到 ,获得积分10
9秒前
9秒前
able发布了新的文献求助10
10秒前
CC发布了新的文献求助10
10秒前
pray完成签到,获得积分10
11秒前
11秒前
qiqiqi发布了新的文献求助10
11秒前
11秒前
Hello应助jason0023采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548