频道(广播)
计算机科学
电压
物理
门控
拓扑(电路)
作者
Timothée Mouterde,Ashok Keerthi,Anthony R. Poggioli,S. A. Dar,Alessandro Siria,Andre K. Geim,Lydéric Bocquet,Boya Radha
出处
期刊:arXiv: Soft Condensed Matter
日期:2019-10-24
被引量:87
标识
DOI:10.1038/s41586-019-0961-5
摘要
The field of nanofluidics has shown considerable progress over the past decade thanks to key instrumental advances, leading to the discovery of a number of exotic transport phenomena for fluids and ions under extreme confinement. Recently, van der Waals assembly of 2D materials allowed fabrication of artificial channels with angstr\om-scale precision. This ultimate confinement to the true molecular scale revealed unforeseen behaviour for both mass and ionic transport. In this work, we explore pressure-driven streaming in such molecular-size slits and report a new electro-hydrodynamic effect under coupled pressure and electric force. It takes the form of a transistor-like response of the pressure induced ionic streaming: an applied bias of a fraction of a volt results in an enhancement of the streaming mobility by up to 20 times. The gating effect is observed with both graphite and boron nitride channels but exhibits marked material-dependent features. Our observations are rationalized by a theoretical framework for the flow dynamics, including the frictional interaction of water, ions and the confining surfaces as a key ingredient. The material dependence of the voltage modulation can be traced back to a contrasting molecular friction on graphene and boron nitride. The highly nonlinear transport under molecular-scale confinement offers new routes to actively control molecular and ion transport and design elementary building blocks for artificial ionic machinery, such as ion pumps. Furthermore, it provides a versatile platform to explore electro-mechanical couplings potentially at play in recently discovered mechanosensitive ionic channels.
科研通智能强力驱动
Strongly Powered by AbleSci AI