Molecular streaming and its voltage control in {\aa}ngstr\"om scale channels

频道(广播) 计算机科学 电压 物理 门控 拓扑(电路)
作者
Timothée Mouterde,Ashok Keerthi,Anthony R. Poggioli,S. A. Dar,Alessandro Siria,Andre K. Geim,Lydéric Bocquet,Boya Radha
出处
期刊:arXiv: Soft Condensed Matter 被引量:87
标识
DOI:10.1038/s41586-019-0961-5
摘要

The field of nanofluidics has shown considerable progress over the past decade thanks to key instrumental advances, leading to the discovery of a number of exotic transport phenomena for fluids and ions under extreme confinement. Recently, van der Waals assembly of 2D materials allowed fabrication of artificial channels with angstr\om-scale precision. This ultimate confinement to the true molecular scale revealed unforeseen behaviour for both mass and ionic transport. In this work, we explore pressure-driven streaming in such molecular-size slits and report a new electro-hydrodynamic effect under coupled pressure and electric force. It takes the form of a transistor-like response of the pressure induced ionic streaming: an applied bias of a fraction of a volt results in an enhancement of the streaming mobility by up to 20 times. The gating effect is observed with both graphite and boron nitride channels but exhibits marked material-dependent features. Our observations are rationalized by a theoretical framework for the flow dynamics, including the frictional interaction of water, ions and the confining surfaces as a key ingredient. The material dependence of the voltage modulation can be traced back to a contrasting molecular friction on graphene and boron nitride. The highly nonlinear transport under molecular-scale confinement offers new routes to actively control molecular and ion transport and design elementary building blocks for artificial ionic machinery, such as ion pumps. Furthermore, it provides a versatile platform to explore electro-mechanical couplings potentially at play in recently discovered mechanosensitive ionic channels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的曲奇完成签到 ,获得积分10
1秒前
魔幻的摩托完成签到 ,获得积分10
1秒前
仁爱小凝完成签到,获得积分20
1秒前
帅b完成签到,获得积分10
2秒前
王杰发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
5秒前
中和皇极应助仁爱小凝采纳,获得10
5秒前
圆圆发布了新的文献求助10
6秒前
情怀应助123lx采纳,获得10
6秒前
顾矜应助惜灵采纳,获得10
6秒前
和谐雪曼发布了新的文献求助10
7秒前
CiCi完成签到 ,获得积分10
8秒前
帅b发布了新的文献求助10
8秒前
Gcy丶发布了新的文献求助10
9秒前
Hello应助西海岸的风采纳,获得10
9秒前
王1完成签到,获得积分20
10秒前
Lkq发布了新的文献求助10
10秒前
11秒前
李爱国应助ck采纳,获得10
11秒前
爱听歌的人达完成签到,获得积分10
13秒前
13秒前
spc68应助晚意采纳,获得10
14秒前
15秒前
闪闪涫应助帅b采纳,获得10
16秒前
王1发布了新的文献求助10
16秒前
zzzzzzzz周发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
万能图书馆应助圆圆采纳,获得10
18秒前
研友_VZG7GZ应助天苍野茫采纳,获得10
18秒前
19秒前
21秒前
善学以致用应助Aliya采纳,获得10
22秒前
23秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672