化学
锆
还原(数学)
氧气
金属有机骨架
金属
氧还原反应
无机化学
有机化学
吸附
电化学
电极
物理化学
几何学
数学
作者
Magdalena Ola Cichocka,Zuozhong Liang,Dawei Feng,Seoin Back,Samira Siahrostami,Xia Wang,Laura Samperisi,Yujia Sun,Hongyi Xu,Niklas Hedin,Haoquan Zheng,Xiaodong Zou,Hong‐Cai Zhou,Zhehao Huang
摘要
The oxygen reduction reaction (ORR) is central in carbon-neutral energy devices. While platinum group materials have shown high activities for ORR, their practical uses are hampered by concerns over deactivation, slow kinetics, exorbitant cost, and scarce nature reserve. The low cost yet high tunability of metal-organic frameworks (MOFs) provide a unique platform for tailoring their characteristic properties as new electrocatalysts. Herein, we report a new concept of design and present stable Zr-chain-based MOFs as efficient electrocatalysts for ORR. The strategy is based on using Zr-chains to promote high chemical and redox stability and, more importantly, tailor the immobilization and packing of redox active-sites at a density that is ideal to improve the reaction kinetics. The obtained new electrocatalyst, PCN-226, thereby shows high ORR activity. We further demonstrate PCN-226 as a promising electrode material for practical applications in rechargeable Zn-air batteries, with a high peak power density of 133 mW cm
科研通智能强力驱动
Strongly Powered by AbleSci AI