Radiomics Signatures Based on Multiparametric MRI for the Preoperative Prediction of the HER2 Status of Patients with Breast Cancer

医学 乳腺癌 无线电技术 磁共振成像 队列 乳房磁振造影 置信区间 放射科 癌症 内科学 乳腺摄影术
作者
Jing Zhou,Hongna Tan,Wei Li,Zehua Liu,Yaping Wu,Yan Bai,Fangfang Fu,Xin Jia,Aozi Feng,Huan Liu,Meiyun Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (10): 1352-1360 被引量:38
标识
DOI:10.1016/j.acra.2020.05.040
摘要

Objectives The aim of our study was to preoperatively predict the human epidermal growth factor receptor 2 (HER2) status of patients with breast cancer using radiomics signatures based on single-parametric and multiparametric magnetic resonance imaging (MRI). Methods Three hundred six patients with invasive ductal carcinoma of no special type (IDC-NST) were retrospectively enrolled. Quantitative imaging features were extracted from fat-suppressed T2-weighted and dynamic contrast-enhanced T1 weighted (DCE-T1) preoperative MRI. Then, three radiomics signatures based on fat-suppressed T2-weighted images, DCE-T1 images and their combination were developed using a support vector machine (SVM) to predict the HER2-positive vs HER2-negative status of patients with breast cancer. The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the predictive performances of the signatures. Results Twenty-eight quantitative radiomics features, namely, 14 texture features, 4 first-order features, 9 wavelet features, and 1 shape feature, were used to construct radiomics signatures. The performance of the radiomics signatures for distinguishing HER2-positive from HER2-negative breast cancer based on fat-suppressed T2-weighted images, DCE-T1 images, and their combination had an AUC of 0.74 (95% confidence interval [CI], 0.700 to 0.770), 0.71 (0.673 to 0.738), and 0.86 (0.832 to 0.882) in the primary cohort and 0.70 (0.666 to 0.744), 0.68 (0.650 to 0.726), and 0.81 (0.776 to 0.837) in the validation cohort, respectively. Conclusion Radiomics signatures based on multiparametric MRI represent a potential and efficient alternative tool to evaluate the HER2 status in patients with breast cancer. The aim of our study was to preoperatively predict the human epidermal growth factor receptor 2 (HER2) status of patients with breast cancer using radiomics signatures based on single-parametric and multiparametric magnetic resonance imaging (MRI). Three hundred six patients with invasive ductal carcinoma of no special type (IDC-NST) were retrospectively enrolled. Quantitative imaging features were extracted from fat-suppressed T2-weighted and dynamic contrast-enhanced T1 weighted (DCE-T1) preoperative MRI. Then, three radiomics signatures based on fat-suppressed T2-weighted images, DCE-T1 images and their combination were developed using a support vector machine (SVM) to predict the HER2-positive vs HER2-negative status of patients with breast cancer. The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the predictive performances of the signatures. Twenty-eight quantitative radiomics features, namely, 14 texture features, 4 first-order features, 9 wavelet features, and 1 shape feature, were used to construct radiomics signatures. The performance of the radiomics signatures for distinguishing HER2-positive from HER2-negative breast cancer based on fat-suppressed T2-weighted images, DCE-T1 images, and their combination had an AUC of 0.74 (95% confidence interval [CI], 0.700 to 0.770), 0.71 (0.673 to 0.738), and 0.86 (0.832 to 0.882) in the primary cohort and 0.70 (0.666 to 0.744), 0.68 (0.650 to 0.726), and 0.81 (0.776 to 0.837) in the validation cohort, respectively. Radiomics signatures based on multiparametric MRI represent a potential and efficient alternative tool to evaluate the HER2 status in patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JAJ发布了新的文献求助10
刚刚
传奇3应助汤圆圆儿采纳,获得10
刚刚
ZWZ完成签到,获得积分10
刚刚
刚刚
岸边渔客发布了新的文献求助10
刚刚
火火完成签到,获得积分20
1秒前
科研通AI2S应助一杯双皮奶采纳,获得10
1秒前
软土豆丝发布了新的文献求助10
2秒前
2秒前
2秒前
甜芋发布了新的文献求助30
3秒前
科研通AI5应助动听的靖琪采纳,获得50
3秒前
jjjj发布了新的文献求助10
3秒前
wanci应助科研废物采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研小王发布了新的文献求助10
4秒前
风中子轩发布了新的文献求助15
4秒前
4秒前
4秒前
zywoo完成签到,获得积分10
5秒前
5秒前
Jasper应助zyq采纳,获得10
5秒前
chemlixy完成签到 ,获得积分10
6秒前
jwx应助瑶瑶采纳,获得10
6秒前
UU发布了新的文献求助10
6秒前
迟大猫应助张张张采纳,获得10
7秒前
7秒前
he完成签到 ,获得积分10
7秒前
yao完成签到,获得积分10
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
lancet完成签到,获得积分10
8秒前
田様应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
优美的风完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
李健应助科研通管家采纳,获得10
9秒前
干净又夏发布了新的文献求助10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
Orange应助欢呼的墨镜采纳,获得10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836