Multi-energy CT reconstruction using tensor nonlocal similarity and spatial sparsity regularization

迭代重建 张量(固有定义) 计算机科学 正规化(语言学) 人工智能 成像体模 算法 计算机视觉 模式识别(心理学) 图像质量 数学 图像(数学) 物理 光学 纯数学
作者
Wenkun Zhang,Ningning Liang,Zhe Wang,Ailong Cai,Linyuan Wang,Chao Tang,Zhizhong Zheng,Lei Li,Bin Yan,Guoen Hu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:10 (10): 1940-1960 被引量:9
标识
DOI:10.21037/qims-20-594
摘要

Multi-energy computed tomography (MECT) based on a photon-counting detector is an emerging imaging modality that collects projections at several energy bins with a single scan. However, the limited number of photons collected into the divided, narrow energy bins results in high quantum noise levels in reconstructed images. This study aims to improve MECT image quality by minimizing noise levels while retaining image details.A novel MECT reconstruction method was proposed by exploiting the nonlocal tensor similarity among interchannel images and spatial sparsity in single-channel images. Similar patches were initially extracted from the interchannel images in spectral and spatial domains, then stacked into a new three-order tensor. Intrinsic tensor sparsity regularization that combined the Tuker and canonical polyadic (CP) low-rank decomposition techniques were applied to exploit the nonlocal similarity of the formulated tensor. Spatial sparsity in single-channel images was modeled by total variation (TV) regularization that utilizes the compressibility of gradient image. A new MECT reconstruction model was established by simultaneously incorporating the intrinsic tensor sparsity and TV regularizations. The iterative alternating minimization method was utilized to solve the reconstruction model based on a flexible framework.The proposed method was applied to the digital phantom and real mouse data to assess its feasibility and reliability. The reconstruction and decomposition results in the mouse data were encouraging and demonstrated the ability of the proposed method in noise suppression while preserving image details, not observed with other methods. Imaging data from the digital phantom illustrated this method as achieving the best intuitive reconstruction and decomposition results among all compared methods. They reduced the root mean square error (RMSE) by 89.75%, 50.75%, and 36.54% on the reconstructed images compared with analytic, TV-based, and tensor-based methods, respectively. This phenomenon was also observed with decomposition results, where the RMSE was also reduced by 97.96%, 67.74%, 72.05%, respectively.In this study, we proposed a reconstruction method for photon counting detector-based MECT, using the intrinsic tensor sparsity and TV regularizations. Improvements in noise suppression and detail preservation in the digital phantom and real mouse data were validated by the qualitative and quantitative evaluations on the reconstruction and decomposition results, verifying the potential of the proposed method in MECT reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珂珂完成签到 ,获得积分10
1秒前
SeeThrough0033完成签到,获得积分20
3秒前
tangchao完成签到,获得积分10
7秒前
Jonsnow完成签到 ,获得积分10
13秒前
宸浅完成签到 ,获得积分10
15秒前
沉默采波完成签到 ,获得积分10
16秒前
richard1357完成签到 ,获得积分10
21秒前
风起云涌龙完成签到 ,获得积分0
23秒前
chenbin完成签到,获得积分10
25秒前
陈米花完成签到,获得积分10
29秒前
yyjl31完成签到,获得积分10
29秒前
Simon_chat完成签到,获得积分10
29秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
32秒前
吐司炸弹完成签到,获得积分10
32秒前
mayfly完成签到,获得积分10
32秒前
无为完成签到 ,获得积分10
34秒前
yu_z完成签到 ,获得积分10
35秒前
cx完成签到,获得积分10
40秒前
sunny发布了新的文献求助10
43秒前
选课完成签到,获得积分10
44秒前
人类繁殖学完成签到 ,获得积分10
50秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
51秒前
wendydqw发布了新的文献求助10
51秒前
平常山河完成签到 ,获得积分10
59秒前
属实有点拉胯完成签到 ,获得积分10
59秒前
怡心亭完成签到 ,获得积分10
1分钟前
小学生学免疫完成签到 ,获得积分10
1分钟前
榆木小鸟完成签到 ,获得积分10
1分钟前
大气的乌冬面完成签到,获得积分10
1分钟前
wendydqw完成签到 ,获得积分10
1分钟前
eular完成签到 ,获得积分10
1分钟前
左丘映易完成签到,获得积分0
1分钟前
踏实谷蓝完成签到 ,获得积分10
1分钟前
LT完成签到 ,获得积分10
1分钟前
高兴孤云完成签到 ,获得积分10
1分钟前
1分钟前
biancaliu发布了新的文献求助10
1分钟前
山楂完成签到,获得积分10
2分钟前
2分钟前
珍妮发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146846
求助须知:如何正确求助?哪些是违规求助? 2798144
关于积分的说明 7826732
捐赠科研通 2454709
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565