亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-energy CT reconstruction using tensor nonlocal similarity and spatial sparsity regularization

迭代重建 张量(固有定义) 计算机科学 正规化(语言学) 人工智能 成像体模 算法 计算机视觉 模式识别(心理学) 图像质量 数学 图像(数学) 物理 光学 纯数学
作者
Wenkun Zhang,Ningning Liang,Zhe Wang,Ailong Cai,Linyuan Wang,Chao Tang,Zhizhong Zheng,Lei Li,Bin Yan,Guoen Hu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:10 (10): 1940-1960 被引量:9
标识
DOI:10.21037/qims-20-594
摘要

Multi-energy computed tomography (MECT) based on a photon-counting detector is an emerging imaging modality that collects projections at several energy bins with a single scan. However, the limited number of photons collected into the divided, narrow energy bins results in high quantum noise levels in reconstructed images. This study aims to improve MECT image quality by minimizing noise levels while retaining image details.A novel MECT reconstruction method was proposed by exploiting the nonlocal tensor similarity among interchannel images and spatial sparsity in single-channel images. Similar patches were initially extracted from the interchannel images in spectral and spatial domains, then stacked into a new three-order tensor. Intrinsic tensor sparsity regularization that combined the Tuker and canonical polyadic (CP) low-rank decomposition techniques were applied to exploit the nonlocal similarity of the formulated tensor. Spatial sparsity in single-channel images was modeled by total variation (TV) regularization that utilizes the compressibility of gradient image. A new MECT reconstruction model was established by simultaneously incorporating the intrinsic tensor sparsity and TV regularizations. The iterative alternating minimization method was utilized to solve the reconstruction model based on a flexible framework.The proposed method was applied to the digital phantom and real mouse data to assess its feasibility and reliability. The reconstruction and decomposition results in the mouse data were encouraging and demonstrated the ability of the proposed method in noise suppression while preserving image details, not observed with other methods. Imaging data from the digital phantom illustrated this method as achieving the best intuitive reconstruction and decomposition results among all compared methods. They reduced the root mean square error (RMSE) by 89.75%, 50.75%, and 36.54% on the reconstructed images compared with analytic, TV-based, and tensor-based methods, respectively. This phenomenon was also observed with decomposition results, where the RMSE was also reduced by 97.96%, 67.74%, 72.05%, respectively.In this study, we proposed a reconstruction method for photon counting detector-based MECT, using the intrinsic tensor sparsity and TV regularizations. Improvements in noise suppression and detail preservation in the digital phantom and real mouse data were validated by the qualitative and quantitative evaluations on the reconstruction and decomposition results, verifying the potential of the proposed method in MECT reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
48秒前
科目三应助科研通管家采纳,获得10
59秒前
烂漫的断秋完成签到 ,获得积分10
1分钟前
1分钟前
andrele完成签到,获得积分10
1分钟前
WILD完成签到 ,获得积分10
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
一粒发布了新的文献求助10
1分钟前
lsl应助yuyy采纳,获得10
1分钟前
1分钟前
LYL完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
陳.发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
上官若男应助大晨采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
3分钟前
大晨发布了新的文献求助10
3分钟前
lili发布了新的文献求助10
3分钟前
3分钟前
lili完成签到,获得积分20
3分钟前
cc完成签到,获得积分10
3分钟前
4分钟前
海绵宝宝完成签到 ,获得积分10
4分钟前
Jasper应助阳光的星月采纳,获得10
4分钟前
TXZ06完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
打打应助朴素海亦采纳,获得10
5分钟前
方汀应助朴素海亦采纳,获得10
5分钟前
6分钟前
dd完成签到,获得积分10
6分钟前
6分钟前
开朗大雁完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107