Multi-energy CT reconstruction using tensor nonlocal similarity and spatial sparsity regularization

迭代重建 张量(固有定义) 计算机科学 正规化(语言学) 人工智能 成像体模 算法 计算机视觉 模式识别(心理学) 图像质量 数学 图像(数学) 物理 光学 纯数学
作者
Wenkun Zhang,Ningning Liang,Zhe Wang,Ailong Cai,Linyuan Wang,Chao Tang,Zhizhong Zheng,Lei Li,Bin Yan,Guoen Hu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:10 (10): 1940-1960 被引量:9
标识
DOI:10.21037/qims-20-594
摘要

Multi-energy computed tomography (MECT) based on a photon-counting detector is an emerging imaging modality that collects projections at several energy bins with a single scan. However, the limited number of photons collected into the divided, narrow energy bins results in high quantum noise levels in reconstructed images. This study aims to improve MECT image quality by minimizing noise levels while retaining image details.A novel MECT reconstruction method was proposed by exploiting the nonlocal tensor similarity among interchannel images and spatial sparsity in single-channel images. Similar patches were initially extracted from the interchannel images in spectral and spatial domains, then stacked into a new three-order tensor. Intrinsic tensor sparsity regularization that combined the Tuker and canonical polyadic (CP) low-rank decomposition techniques were applied to exploit the nonlocal similarity of the formulated tensor. Spatial sparsity in single-channel images was modeled by total variation (TV) regularization that utilizes the compressibility of gradient image. A new MECT reconstruction model was established by simultaneously incorporating the intrinsic tensor sparsity and TV regularizations. The iterative alternating minimization method was utilized to solve the reconstruction model based on a flexible framework.The proposed method was applied to the digital phantom and real mouse data to assess its feasibility and reliability. The reconstruction and decomposition results in the mouse data were encouraging and demonstrated the ability of the proposed method in noise suppression while preserving image details, not observed with other methods. Imaging data from the digital phantom illustrated this method as achieving the best intuitive reconstruction and decomposition results among all compared methods. They reduced the root mean square error (RMSE) by 89.75%, 50.75%, and 36.54% on the reconstructed images compared with analytic, TV-based, and tensor-based methods, respectively. This phenomenon was also observed with decomposition results, where the RMSE was also reduced by 97.96%, 67.74%, 72.05%, respectively.In this study, we proposed a reconstruction method for photon counting detector-based MECT, using the intrinsic tensor sparsity and TV regularizations. Improvements in noise suppression and detail preservation in the digital phantom and real mouse data were validated by the qualitative and quantitative evaluations on the reconstruction and decomposition results, verifying the potential of the proposed method in MECT reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaixS完成签到,获得积分10
2秒前
2秒前
要笑cc完成签到,获得积分10
4秒前
对对对完成签到 ,获得积分10
6秒前
宣宣宣0733完成签到,获得积分10
6秒前
断了的弦完成签到,获得积分10
6秒前
丰富的归尘完成签到 ,获得积分10
8秒前
胡质斌完成签到,获得积分10
8秒前
11秒前
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
笨笨完成签到 ,获得积分10
13秒前
13秒前
马冬梅完成签到 ,获得积分10
15秒前
愉快白亦完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
21秒前
务实笑柳完成签到 ,获得积分10
21秒前
玖月完成签到 ,获得积分0
24秒前
caicai完成签到 ,获得积分10
26秒前
28秒前
睿睿斌斌完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
睿睿斌斌发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
qiancib202完成签到,获得积分0
33秒前
无极2023完成签到 ,获得积分10
34秒前
34秒前
sci完成签到 ,获得积分10
39秒前
39秒前
量子星尘发布了新的文献求助10
39秒前
姚芭蕉完成签到 ,获得积分0
40秒前
啊哈哈完成签到,获得积分10
40秒前
赵yy发布了新的文献求助10
42秒前
空白完成签到 ,获得积分10
43秒前
swordshine完成签到,获得积分0
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773340
求助须知:如何正确求助?哪些是违规求助? 5610028
关于积分的说明 15430945
捐赠科研通 4905868
什么是DOI,文献DOI怎么找? 2639872
邀请新用户注册赠送积分活动 1587768
关于科研通互助平台的介绍 1542775