Multi-energy CT reconstruction using tensor nonlocal similarity and spatial sparsity regularization

迭代重建 张量(固有定义) 计算机科学 正规化(语言学) 人工智能 成像体模 算法 计算机视觉 模式识别(心理学) 图像质量 数学 图像(数学) 物理 光学 纯数学
作者
Wenkun Zhang,Ningning Liang,Zhe Wang,Ailong Cai,Linyuan Wang,Chao Tang,Zhizhong Zheng,Lei Li,Bin Yan,Guoen Hu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:10 (10): 1940-1960 被引量:9
标识
DOI:10.21037/qims-20-594
摘要

Multi-energy computed tomography (MECT) based on a photon-counting detector is an emerging imaging modality that collects projections at several energy bins with a single scan. However, the limited number of photons collected into the divided, narrow energy bins results in high quantum noise levels in reconstructed images. This study aims to improve MECT image quality by minimizing noise levels while retaining image details.A novel MECT reconstruction method was proposed by exploiting the nonlocal tensor similarity among interchannel images and spatial sparsity in single-channel images. Similar patches were initially extracted from the interchannel images in spectral and spatial domains, then stacked into a new three-order tensor. Intrinsic tensor sparsity regularization that combined the Tuker and canonical polyadic (CP) low-rank decomposition techniques were applied to exploit the nonlocal similarity of the formulated tensor. Spatial sparsity in single-channel images was modeled by total variation (TV) regularization that utilizes the compressibility of gradient image. A new MECT reconstruction model was established by simultaneously incorporating the intrinsic tensor sparsity and TV regularizations. The iterative alternating minimization method was utilized to solve the reconstruction model based on a flexible framework.The proposed method was applied to the digital phantom and real mouse data to assess its feasibility and reliability. The reconstruction and decomposition results in the mouse data were encouraging and demonstrated the ability of the proposed method in noise suppression while preserving image details, not observed with other methods. Imaging data from the digital phantom illustrated this method as achieving the best intuitive reconstruction and decomposition results among all compared methods. They reduced the root mean square error (RMSE) by 89.75%, 50.75%, and 36.54% on the reconstructed images compared with analytic, TV-based, and tensor-based methods, respectively. This phenomenon was also observed with decomposition results, where the RMSE was also reduced by 97.96%, 67.74%, 72.05%, respectively.In this study, we proposed a reconstruction method for photon counting detector-based MECT, using the intrinsic tensor sparsity and TV regularizations. Improvements in noise suppression and detail preservation in the digital phantom and real mouse data were validated by the qualitative and quantitative evaluations on the reconstruction and decomposition results, verifying the potential of the proposed method in MECT reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arron发布了新的文献求助10
1秒前
2秒前
3秒前
sunbursl发布了新的文献求助10
4秒前
哇哇哇哇我应助燕子采纳,获得20
4秒前
SYLH应助滕皓轩采纳,获得30
5秒前
奇异果完成签到 ,获得积分10
7秒前
热心市民小红花应助Alice采纳,获得10
7秒前
小皮皮完成签到,获得积分10
8秒前
lanting发布了新的文献求助10
8秒前
哈哈哈完成签到 ,获得积分10
9秒前
丘比特应助冷傲熊猫采纳,获得30
12秒前
11完成签到,获得积分20
12秒前
13秒前
14秒前
浮浮完成签到,获得积分10
14秒前
无情的君浩应助读书狼采纳,获得30
15秒前
16秒前
18秒前
研友_Lmg1gZ发布了新的文献求助80
20秒前
端庄的踏歌完成签到,获得积分10
21秒前
JamesPei应助minmin采纳,获得10
23秒前
李爱国应助一二采纳,获得10
23秒前
26秒前
隐形曼青应助柴柴采纳,获得10
29秒前
29秒前
CQCQ发布了新的文献求助30
31秒前
32秒前
Lucas应助LL爱读书采纳,获得10
33秒前
一二发布了新的文献求助10
35秒前
11关注了科研通微信公众号
36秒前
37秒前
秀丽莛完成签到,获得积分20
38秒前
理想三寻完成签到,获得积分10
40秒前
别不开星完成签到,获得积分10
41秒前
张小馨完成签到 ,获得积分10
42秒前
CO2完成签到,获得积分10
42秒前
今后应助lanting采纳,获得10
44秒前
SIRT1发布了新的文献求助10
44秒前
秀丽莛关注了科研通微信公众号
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003