已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-energy CT reconstruction using tensor nonlocal similarity and spatial sparsity regularization

迭代重建 张量(固有定义) 计算机科学 正规化(语言学) 人工智能 成像体模 算法 计算机视觉 模式识别(心理学) 图像质量 数学 图像(数学) 物理 光学 纯数学
作者
Wenkun Zhang,Ningning Liang,Zhe Wang,Ailong Cai,Linyuan Wang,Chao Tang,Zhizhong Zheng,Lei Li,Bin Yan,Guoen Hu
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:10 (10): 1940-1960 被引量:9
标识
DOI:10.21037/qims-20-594
摘要

Multi-energy computed tomography (MECT) based on a photon-counting detector is an emerging imaging modality that collects projections at several energy bins with a single scan. However, the limited number of photons collected into the divided, narrow energy bins results in high quantum noise levels in reconstructed images. This study aims to improve MECT image quality by minimizing noise levels while retaining image details.A novel MECT reconstruction method was proposed by exploiting the nonlocal tensor similarity among interchannel images and spatial sparsity in single-channel images. Similar patches were initially extracted from the interchannel images in spectral and spatial domains, then stacked into a new three-order tensor. Intrinsic tensor sparsity regularization that combined the Tuker and canonical polyadic (CP) low-rank decomposition techniques were applied to exploit the nonlocal similarity of the formulated tensor. Spatial sparsity in single-channel images was modeled by total variation (TV) regularization that utilizes the compressibility of gradient image. A new MECT reconstruction model was established by simultaneously incorporating the intrinsic tensor sparsity and TV regularizations. The iterative alternating minimization method was utilized to solve the reconstruction model based on a flexible framework.The proposed method was applied to the digital phantom and real mouse data to assess its feasibility and reliability. The reconstruction and decomposition results in the mouse data were encouraging and demonstrated the ability of the proposed method in noise suppression while preserving image details, not observed with other methods. Imaging data from the digital phantom illustrated this method as achieving the best intuitive reconstruction and decomposition results among all compared methods. They reduced the root mean square error (RMSE) by 89.75%, 50.75%, and 36.54% on the reconstructed images compared with analytic, TV-based, and tensor-based methods, respectively. This phenomenon was also observed with decomposition results, where the RMSE was also reduced by 97.96%, 67.74%, 72.05%, respectively.In this study, we proposed a reconstruction method for photon counting detector-based MECT, using the intrinsic tensor sparsity and TV regularizations. Improvements in noise suppression and detail preservation in the digital phantom and real mouse data were validated by the qualitative and quantitative evaluations on the reconstruction and decomposition results, verifying the potential of the proposed method in MECT reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉斯完成签到 ,获得积分10
2秒前
修水县1个科研人完成签到 ,获得积分10
2秒前
4秒前
5秒前
8秒前
香蕉觅云应助xxxllllll采纳,获得10
8秒前
9秒前
研友_VZG7GZ应助C_Cppp采纳,获得10
10秒前
Willow完成签到,获得积分10
10秒前
沉默大白菜完成签到,获得积分20
10秒前
吾系渣渣辉完成签到 ,获得积分10
11秒前
优雅的大白菜完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
温婉的凝芙完成签到 ,获得积分10
13秒前
yqt完成签到,获得积分10
14秒前
xie完成签到 ,获得积分10
14秒前
17发布了新的文献求助10
15秒前
15秒前
诺贝尔候选人完成签到 ,获得积分10
16秒前
着急的猴完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
19秒前
浮浮世世发布了新的文献求助60
20秒前
C_Cppp发布了新的文献求助10
21秒前
英勇羿发布了新的文献求助10
21秒前
Afliea发布了新的文献求助10
23秒前
26秒前
C_Cppp完成签到,获得积分10
27秒前
思源应助细心盼晴采纳,获得10
27秒前
30秒前
hh发布了新的文献求助10
31秒前
31秒前
充电宝应助虚心碧采纳,获得10
32秒前
32秒前
dyw发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616958
求助须知:如何正确求助?哪些是违规求助? 4701288
关于积分的说明 14913198
捐赠科研通 4746999
什么是DOI,文献DOI怎么找? 2549134
邀请新用户注册赠送积分活动 1512284
关于科研通互助平台的介绍 1474049