A Multi-Scale Fusion Convolutional Neural Network Based on Attention Mechanism for the Visualization Analysis of EEG Signals Decoding

卷积神经网络 脑-机接口 解码方法 计算机科学 脑电图 可视化 人工智能 运动表象 模式识别(心理学) 代表(政治) 融合机制 接口(物质) 神经科学 心理学 融合 算法 哲学 最大气泡压力法 气泡 脂质双层融合 政治 语言学 并行计算 法学 政治学
作者
Donglin Li,Jiacan Xu,Jianhui Wang,Xiaoke Fang,Ying Ji
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 2615-2626 被引量:77
标识
DOI:10.1109/tnsre.2020.3037326
摘要

Brain-computer interface (BCI) based on motor imagery (MI) electroencephalogram (EEG) decoding helps motor-disabled patients to communicate with external devices directly, which can achieve the purpose of human-computer interaction and assisted living. MI EEG decoding has a core problem which is extracting as many multiple types of features as possible from the multi-channel time series of EEG to understand brain activity accurately. Recently, deep learning technology has been widely used in EEG decoding. However, the variability of the simple network framework is insufficient to satisfy the complex task of EEG decoding. A multi-scale fusion convolutional neural network based on the attention mechanism (MS-AMF) is proposed in this paper. The network extracts spatio temporal multi-scale features from multi-brain regions representation signals and is supplemented by a dense fusion strategy to retain the maximum information flow. The attention mechanism we added to the network has improved the sensitivity of the network. The experimental results show that the network has a better classification effect compared with the baseline method in the BCI Competition IV-2a dataset. We conducted visualization analysis in multiple parts of the network, and the results show that the attention mechanism is also convenient for analyzing the underlying information flow of EEG decoding, which verifies the effectiveness of the MS-AMF method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaogua完成签到,获得积分10
1秒前
2秒前
2秒前
w吴栋臣发布了新的文献求助10
3秒前
Lucas应助大内泌探009采纳,获得10
3秒前
ZhangXF发布了新的文献求助10
5秒前
5秒前
6秒前
坦率完成签到,获得积分10
7秒前
KD发布了新的文献求助10
7秒前
Geng关注了科研通微信公众号
8秒前
寒冷白开水应助EvenCai采纳,获得10
9秒前
11秒前
万能图书馆应助寄AAA采纳,获得10
11秒前
量子星尘发布了新的文献求助150
11秒前
肖战战完成签到 ,获得积分10
11秒前
大内泌探009完成签到,获得积分10
11秒前
14秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得20
15秒前
Akim应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
YWang应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
唔卡玛卡巴卡完成签到,获得积分20
17秒前
eric888应助英俊汽车采纳,获得100
18秒前
18秒前
Bob完成签到,获得积分10
18秒前
修越完成签到 ,获得积分10
18秒前
斯文败类应助kesler采纳,获得10
19秒前
19秒前
CodeCraft应助diedka采纳,获得10
19秒前
cardiology完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069472
求助须知:如何正确求助?哪些是违规求助? 4290805
关于积分的说明 13368855
捐赠科研通 4111012
什么是DOI,文献DOI怎么找? 2251169
邀请新用户注册赠送积分活动 1256420
关于科研通互助平台的介绍 1188901