A Multi-Scale Fusion Convolutional Neural Network Based on Attention Mechanism for the Visualization Analysis of EEG Signals Decoding

卷积神经网络 脑-机接口 解码方法 计算机科学 脑电图 可视化 人工智能 运动表象 模式识别(心理学) 代表(政治) 融合机制 接口(物质) 神经科学 心理学 融合 算法 哲学 最大气泡压力法 气泡 脂质双层融合 政治 语言学 并行计算 法学 政治学
作者
Donglin Li,Jiacan Xu,Jianhui Wang,Xiaoke Fang,Ying Ji
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 2615-2626 被引量:77
标识
DOI:10.1109/tnsre.2020.3037326
摘要

Brain-computer interface (BCI) based on motor imagery (MI) electroencephalogram (EEG) decoding helps motor-disabled patients to communicate with external devices directly, which can achieve the purpose of human-computer interaction and assisted living. MI EEG decoding has a core problem which is extracting as many multiple types of features as possible from the multi-channel time series of EEG to understand brain activity accurately. Recently, deep learning technology has been widely used in EEG decoding. However, the variability of the simple network framework is insufficient to satisfy the complex task of EEG decoding. A multi-scale fusion convolutional neural network based on the attention mechanism (MS-AMF) is proposed in this paper. The network extracts spatio temporal multi-scale features from multi-brain regions representation signals and is supplemented by a dense fusion strategy to retain the maximum information flow. The attention mechanism we added to the network has improved the sensitivity of the network. The experimental results show that the network has a better classification effect compared with the baseline method in the BCI Competition IV-2a dataset. We conducted visualization analysis in multiple parts of the network, and the results show that the attention mechanism is also convenient for analyzing the underlying information flow of EEG decoding, which verifies the effectiveness of the MS-AMF method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xylxyl完成签到,获得积分10
刚刚
1秒前
ZBN完成签到,获得积分10
1秒前
222关闭了222文献求助
2秒前
chinh完成签到,获得积分10
2秒前
钮祜禄废废完成签到,获得积分10
2秒前
2秒前
曾经富完成签到,获得积分10
4秒前
酷酷海豚完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
青青完成签到 ,获得积分10
8秒前
Chan0501发布了新的文献求助10
8秒前
昭昭完成签到,获得积分10
9秒前
SCI发布了新的文献求助10
9秒前
卓然完成签到,获得积分10
9秒前
李来仪发布了新的文献求助10
10秒前
11秒前
菲菲呀完成签到,获得积分10
11秒前
Rrr发布了新的文献求助10
11秒前
13秒前
陌路完成签到,获得积分10
13秒前
善学以致用应助leon采纳,获得30
13秒前
14秒前
斯文败类应助嘻嘻采纳,获得10
14秒前
科研通AI5应助小只bb采纳,获得30
14秒前
yyyy发布了新的文献求助10
14秒前
2023AKY完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
彭于晏应助惠惠采纳,获得10
17秒前
风魂剑主完成签到,获得积分10
18秒前
yryzst9899发布了新的文献求助10
18秒前
19秒前
飘逸小笼包完成签到,获得积分10
19秒前
科研小郑完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794