清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Pairwise Attentive Adversarial Spatiotemporal Network for Cross-Domain Few-Shot Action Recognition-R2

计算机科学 成对比较 人工智能 模式识别(心理学) 机器学习 领域(数学分析) 特征提取 动作识别 域适应 特征(语言学) 数学 班级(哲学) 语言学 分类器(UML) 数学分析 哲学
作者
Zan Gao,Leming Guo,Weili Guan,An-An Liu,Tongwei Ren,Shengyong Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 767-782 被引量:42
标识
DOI:10.1109/tip.2020.3038372
摘要

Action recognition is a popular research topic in the computer vision and machine learning domains. Although many action recognition methods have been proposed, only a few researchers have focused on cross-domain few-shot action recognition, which must often be performed in real security surveillance. Since the problems of action recognition, domain adaptation, and few-shot learning need to be simultaneously solved, the cross-domain few-shot action recognition task is a challenging problem. To solve these issues, in this work, we develop a novel end-to-end pairwise attentive adversarial spatiotemporal network (PASTN) to perform the cross-domain few-shot action recognition task, in which spatiotemporal information acquisition, few-shot learning, and video domain adaptation are realised in a unified framework. Specifically, the Resnet-50 network is selected as the backbone of the PASTN, and a 3D convolution block is embedded in the top layer of the 2D CNN (ResNet-50) to capture the spatiotemporal representations. Moreover, a novel attentive adversarial network architecture is designed to align the spatiotemporal dynamics actions with higher domain discrepancies. In addition, the pairwise margin discrimination loss is designed for the pairwise network architecture to improve the discrimination of the learned domain-invariant spatiotemporal feature. The results of extensive experiments performed on three public benchmarks of the cross-domain action recognition datasets, including SDAI Action I, SDAI Action II and UCF50-OlympicSport, demonstrate that the proposed PASTN can significantly outperform the state-of-the-art cross-domain action recognition methods in terms of both the accuracy and computational time. Even when only two labelled training samples per category are considered in the office1 scenario of the SDAI Action I dataset, the accuracy of the PASTN is improved by 6.1%, 10.9%, 16.8%, and 14% compared to that of the $TA^{3}N$ , TemporalPooling, I3D, and P3D methods, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
23秒前
山山而川完成签到 ,获得积分10
25秒前
courage完成签到,获得积分10
38秒前
科研通AI2S应助jlwang采纳,获得10
49秒前
锋feng完成签到 ,获得积分10
53秒前
DJ_Tokyo完成签到,获得积分10
1分钟前
1分钟前
悟川完成签到 ,获得积分10
1分钟前
liuliu完成签到,获得积分10
2分钟前
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
A,w携念e行ོ完成签到,获得积分10
2分钟前
Cole发布了新的文献求助10
2分钟前
风信子完成签到,获得积分10
2分钟前
Aaman完成签到,获得积分10
3分钟前
Zrysaa完成签到,获得积分10
3分钟前
跳跃的鹏飞完成签到 ,获得积分10
3分钟前
lovexa完成签到,获得积分10
3分钟前
wxyinhefeng完成签到 ,获得积分10
3分钟前
a46539749完成签到 ,获得积分10
3分钟前
leena完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
海盐气泡水完成签到,获得积分10
4分钟前
golfgold完成签到,获得积分10
4分钟前
zhdjj完成签到 ,获得积分10
4分钟前
4分钟前
lt0217发布了新的文献求助10
5分钟前
jlwang完成签到,获得积分10
5分钟前
上下完成签到 ,获得积分10
5分钟前
5分钟前
风秋杨完成签到 ,获得积分10
5分钟前
Arthur完成签到 ,获得积分10
5分钟前
深情安青应助毕书白采纳,获得10
5分钟前
juan完成签到 ,获得积分10
5分钟前
管靖易完成签到 ,获得积分10
5分钟前
华仔应助毕书白采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
毕书白发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477