亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Embodied carbon analysis and benchmarking emissions of high and ultra-high strength concrete using machine learning algorithms

抗压强度 具身认知 水准点(测量) 碳足迹 碳纤维 计算机科学 算法 材料科学 复合材料 人工智能 温室气体 地质学 大地测量学 复合数 海洋学
作者
P.S.M. Thilakarathna,Seung‐Woo Seo,Shanaka Kristombu Baduge,Han‐Seung Lee,Priyan Mendis,Greg Foliente
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:262: 121281-121281 被引量:95
标识
DOI:10.1016/j.jclepro.2020.121281
摘要

High strength concrete (HSC) (50–100 MPa) and ultra-high strength concrete (UHSC) (>100 MPa) have been increasingly used in the construction industry due to its inherent performance characteristics. However, these concrete mixes have a higher carbon footprint and it is vital to consider the embodied carbon of the HSC and UHSC due to the massive consumption throughout the world. In this study, embodied carbon analysis, using machine learning algorithms has been carried out to minimize the carbon footprint of concrete without jeopardizing the mechanical properties of the concrete. Machine learning models are developed using experimental results in the literature and used to predict the compressive strength of concrete using the constituent materials. Using the experimental data and machine-learned models for mix designs, embodied carbon emissions were calculated. It is shown that there can be many mix compositions which have the same compressive strength while having significantly different embodied carbon values. Based on experimental and machine learned mix designs, an equation to predict the average embodied carbon value for concrete mixes is proposed. The study suggested proposed intervals for the benchmark function in order to propose a region where the embodied carbon value of a concrete mix should lie while achieving the desired compressive strength. Finally, it is shown that machine learning can be used successfully to identify the high strength concrete mixes while minimizing the embodied carbon value of that mix composition. Finally, guidelines are presented to produce a concrete mix within proposed benchmark limits while achieving the desirable strength grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白小余完成签到,获得积分10
6秒前
6秒前
俯冲食堂完成签到,获得积分10
9秒前
布通发布了新的文献求助10
10秒前
10秒前
修管子完成签到 ,获得积分10
24秒前
33秒前
Archers完成签到 ,获得积分10
38秒前
38秒前
James完成签到,获得积分10
42秒前
招水若离完成签到,获得积分10
55秒前
LANGYE完成签到,获得积分10
57秒前
1分钟前
科研搬运工完成签到,获得积分10
1分钟前
1分钟前
sagapo完成签到 ,获得积分10
1分钟前
寻道图强应助科研通管家采纳,获得40
1分钟前
jingjing完成签到 ,获得积分10
1分钟前
1分钟前
白小余发布了新的文献求助10
1分钟前
简单的尔风完成签到 ,获得积分10
1分钟前
ding应助开心努力毕业版采纳,获得10
1分钟前
1分钟前
科研通AI2S应助安静鸽哥采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
布通发布了新的文献求助30
2分钟前
陶兜兜完成签到,获得积分10
2分钟前
安静的磬发布了新的文献求助10
2分钟前
科研通AI2S应助安静的磬采纳,获得10
2分钟前
科研通AI2S应助陶兜兜采纳,获得10
2分钟前
苗条青槐完成签到 ,获得积分10
2分钟前
支觅露完成签到 ,获得积分10
2分钟前
CipherSage应助蝈蝈采纳,获得30
2分钟前
ooooyasumi完成签到,获得积分10
2分钟前
3分钟前
3分钟前
NexusExplorer应助吵吵robot采纳,获得10
3分钟前
3分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068019
求助须知:如何正确求助?哪些是违规求助? 2722010
关于积分的说明 7475939
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256116
科研通“疑难数据库(出版商)”最低求助积分说明 609454
版权声明 596795