已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Embodied carbon analysis and benchmarking emissions of high and ultra-high strength concrete using machine learning algorithms

抗压强度 具身认知 水准点(测量) 碳足迹 碳纤维 计算机科学 算法 材料科学 复合材料 人工智能 温室气体 地质学 大地测量学 复合数 海洋学
作者
P.S.M. Thilakarathna,Seung‐Woo Seo,Shanaka Kristombu Baduge,Han‐Seung Lee,Priyan Mendis,Greg Foliente
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:262: 121281-121281 被引量:95
标识
DOI:10.1016/j.jclepro.2020.121281
摘要

High strength concrete (HSC) (50–100 MPa) and ultra-high strength concrete (UHSC) (>100 MPa) have been increasingly used in the construction industry due to its inherent performance characteristics. However, these concrete mixes have a higher carbon footprint and it is vital to consider the embodied carbon of the HSC and UHSC due to the massive consumption throughout the world. In this study, embodied carbon analysis, using machine learning algorithms has been carried out to minimize the carbon footprint of concrete without jeopardizing the mechanical properties of the concrete. Machine learning models are developed using experimental results in the literature and used to predict the compressive strength of concrete using the constituent materials. Using the experimental data and machine-learned models for mix designs, embodied carbon emissions were calculated. It is shown that there can be many mix compositions which have the same compressive strength while having significantly different embodied carbon values. Based on experimental and machine learned mix designs, an equation to predict the average embodied carbon value for concrete mixes is proposed. The study suggested proposed intervals for the benchmark function in order to propose a region where the embodied carbon value of a concrete mix should lie while achieving the desired compressive strength. Finally, it is shown that machine learning can be used successfully to identify the high strength concrete mixes while minimizing the embodied carbon value of that mix composition. Finally, guidelines are presented to produce a concrete mix within proposed benchmark limits while achieving the desirable strength grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cyn完成签到,获得积分10
1秒前
晨晨发布了新的文献求助10
3秒前
6秒前
整齐泥猴桃完成签到 ,获得积分10
7秒前
沉静方盒完成签到,获得积分10
8秒前
十元完成签到,获得积分10
8秒前
伶俐向梦发布了新的文献求助10
11秒前
lyp完成签到 ,获得积分10
13秒前
26秒前
27秒前
29秒前
搜集达人应助伶俐向梦采纳,获得10
32秒前
36秒前
dada完成签到,获得积分10
38秒前
39秒前
40秒前
begonia2021发布了新的文献求助10
41秒前
瑾木完成签到 ,获得积分10
42秒前
岸部发布了新的文献求助10
43秒前
43秒前
Hui完成签到,获得积分10
44秒前
Master完成签到 ,获得积分10
44秒前
45秒前
wyx完成签到 ,获得积分10
48秒前
健忘幻儿发布了新的文献求助10
49秒前
研友_ZragOn完成签到,获得积分10
50秒前
伶俐向梦完成签到,获得积分10
50秒前
星期五完成签到,获得积分10
51秒前
Captain发布了新的文献求助30
51秒前
53秒前
淡然的书本完成签到,获得积分20
53秒前
牪犇发布了新的文献求助10
54秒前
光亮的半山完成签到 ,获得积分10
57秒前
岸部发布了新的文献求助10
58秒前
荔枝完成签到 ,获得积分10
1分钟前
Captain完成签到,获得积分10
1分钟前
bkagyin应助karstbing采纳,获得30
1分钟前
想游泳的鹰完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171355
求助须知:如何正确求助?哪些是违规求助? 2822342
关于积分的说明 7938795
捐赠科研通 2482815
什么是DOI,文献DOI怎么找? 1322807
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627