Minimum sample size for external validation of a clinical prediction model with a continuous outcome

样本量测定 差异(会计) 统计 结果(博弈论) 校准 样品(材料) 航程(航空) 交叉验证 计算机科学 数学 计量经济学 业务 数理经济学 会计 复合材料 色谱法 化学 材料科学
作者
Lucinda Archer,Kym I E Snell,Joie Ensor,Mohammed T Hudda,Gary S. Collins,Richard D Riley
出处
期刊:Statistics in Medicine [Wiley]
卷期号:40 (1): 133-146 被引量:117
标识
DOI:10.1002/sim.8766
摘要

Clinical prediction models provide individualized outcome predictions to inform patient counseling and clinical decision making. External validation is the process of examining a prediction model's performance in data independent to that used for model development. Current external validation studies often suffer from small sample sizes, and subsequently imprecise estimates of a model's predictive performance. To address this, we propose how to determine the minimum sample size needed for external validation of a clinical prediction model with a continuous outcome. Four criteria are proposed, that target precise estimates of (i) R 2 (the proportion of variance explained), (ii) calibration‐in‐the‐large (agreement between predicted and observed outcome values on average), (iii) calibration slope (agreement between predicted and observed values across the range of predicted values), and (iv) the variance of observed outcome values. Closed‐form sample size solutions are derived for each criterion, which require the user to specify anticipated values of the model's performance (in particular R 2 ) and the outcome variance in the external validation dataset. A sensible starting point is to base values on those for the model development study, as obtained from the publication or study authors. The largest sample size required to meet all four criteria is the recommended minimum sample size needed in the external validation dataset. The calculations can also be applied to estimate expected precision when an existing dataset with a fixed sample size is available, to help gauge if it is adequate. We illustrate the proposed methods on a case‐study predicting fat‐free mass in children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbdx完成签到 ,获得积分10
刚刚
LX完成签到 ,获得积分10
1秒前
3秒前
领导范儿应助斑驳采纳,获得10
5秒前
6秒前
6秒前
6秒前
李健应助lumoss采纳,获得10
6秒前
Dahai完成签到,获得积分10
7秒前
勤恳的绿凝完成签到,获得积分10
7秒前
7秒前
momo完成签到,获得积分10
8秒前
10秒前
11秒前
小杨发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
王明磊发布了新的文献求助10
12秒前
momo发布了新的文献求助10
13秒前
栀璃鸳挽发布了新的文献求助10
15秒前
满意紫菜发布了新的文献求助10
15秒前
JY发布了新的文献求助10
15秒前
迷路的曼梅完成签到,获得积分10
15秒前
酷波er应助卡乐瑞咩吹可采纳,获得10
16秒前
17秒前
17秒前
18秒前
fzzf发布了新的文献求助10
19秒前
孙孙孙啊发布了新的文献求助20
19秒前
一一完成签到 ,获得积分10
20秒前
现代秦始皇完成签到 ,获得积分10
21秒前
22秒前
JY完成签到,获得积分10
23秒前
小黑完成签到,获得积分10
24秒前
深情安青应助Sky采纳,获得10
24秒前
莉莉丝完成签到,获得积分20
24秒前
满意紫菜完成签到,获得积分20
24秒前
科研通AI2S应助极度采纳,获得10
24秒前
西酞普绿发布了新的文献求助10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962593
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141766
捐赠科研通 3241330
什么是DOI,文献DOI怎么找? 1791510
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803483