A Deep Ensemble Classifier for Surface Defect Detection in Aircraft Visual Inspection

分类器(UML) 人工智能 目视检查 计算机科学 模式识别(心理学) 计算机视觉
作者
Ivan Ren,Feraidoon Zahiri,Gregory P. Sutton,Thomas R. Kurfess,Christopher Saldaña
出处
期刊:Smart and sustainable manufacturing systems [ASM International]
卷期号:4 (1): 81-94 被引量:2
标识
DOI:10.1520/ssms20200031
摘要

Abstract Visual inspection is critical in many maintenance, repair, and overhaul operations and is often the primary defense against premature failure caused by unresolved surface defects. The traditional inspection process is time-consuming and subjective, leading to research into automated systems using computer vision. Several prior methodologies have been developed using convolutional neural networks (CNNs) to classify surface defects; however, these methods often rely on singular models that are sensitive to poor model selection and training errors. Ensembling is a known technique used to minimize the errors of learning algorithms through combining the outputs of multiple models. This paper presents an automated inspection methodology utilizing stacked ensembles of CNNs to classify defects on aircraft surfaces. The proposed framework is evaluated with images obtained from a borescope inspection of aircraft propeller blade bores. It is shown that the ensemble method improves inspection accuracy over conventional single-model deep learning methods. Furthermore, the error reduction provided by the ensemble method reduces false alarms at decision boundaries that minimize missed detections. The proposed method is shown to improve the reliability of automated detection systems, which can avoid catastrophic scenarios on critical systems such as aircraft propellers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WeiSONG完成签到,获得积分10
刚刚
1秒前
正直的煎饼完成签到,获得积分10
1秒前
大吴克发布了新的文献求助10
1秒前
hammer_zhang完成签到,获得积分10
3秒前
4秒前
7秒前
是是是完成签到,获得积分10
7秒前
阿飞大师完成签到,获得积分10
8秒前
qqdm完成签到 ,获得积分10
8秒前
高高诗柳完成签到 ,获得积分10
9秒前
研友_nPxRRn发布了新的文献求助10
10秒前
10秒前
shuxue完成签到,获得积分10
10秒前
一直成长完成签到,获得积分10
11秒前
饺子完成签到,获得积分10
11秒前
一人完成签到,获得积分10
12秒前
甜蜜鹭洋完成签到 ,获得积分10
12秒前
仙林AK47完成签到,获得积分10
12秒前
13秒前
发财小鱼完成签到 ,获得积分10
14秒前
JUGG完成签到,获得积分10
16秒前
ilmiss发布了新的文献求助10
16秒前
光亮萤完成签到,获得积分10
17秒前
还不如瞎写完成签到,获得积分10
17秒前
邓博完成签到,获得积分10
17秒前
虾滑丸子完成签到,获得积分10
18秒前
谦让的冷珍完成签到,获得积分10
18秒前
斯文败类应助研友_nPxRRn采纳,获得10
19秒前
萝卜丁完成签到 ,获得积分0
19秒前
知性的水杯完成签到 ,获得积分10
19秒前
深情安青应助QQ采纳,获得10
19秒前
北笙完成签到 ,获得积分10
19秒前
刘铭晨完成签到,获得积分10
20秒前
20秒前
we1完成签到,获得积分10
21秒前
欧阳完成签到 ,获得积分10
21秒前
23秒前
玛卡巴卡完成签到,获得积分10
24秒前
瓦尔迪完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495348
关于积分的说明 11076451
捐赠科研通 3225877
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867596
科研通“疑难数据库(出版商)”最低求助积分说明 800839