A Deep Ensemble Classifier for Surface Defect Detection in Aircraft Visual Inspection

分类器(UML) 人工智能 目视检查 计算机科学 模式识别(心理学) 计算机视觉
作者
Ivan Ren,Feraidoon Zahiri,Gregory P. Sutton,Thomas R. Kurfess,Christopher Saldaña
出处
期刊:Smart and sustainable manufacturing systems [ASTM International]
卷期号:4 (1): 81-94 被引量:2
标识
DOI:10.1520/ssms20200031
摘要

Abstract Visual inspection is critical in many maintenance, repair, and overhaul operations and is often the primary defense against premature failure caused by unresolved surface defects. The traditional inspection process is time-consuming and subjective, leading to research into automated systems using computer vision. Several prior methodologies have been developed using convolutional neural networks (CNNs) to classify surface defects; however, these methods often rely on singular models that are sensitive to poor model selection and training errors. Ensembling is a known technique used to minimize the errors of learning algorithms through combining the outputs of multiple models. This paper presents an automated inspection methodology utilizing stacked ensembles of CNNs to classify defects on aircraft surfaces. The proposed framework is evaluated with images obtained from a borescope inspection of aircraft propeller blade bores. It is shown that the ensemble method improves inspection accuracy over conventional single-model deep learning methods. Furthermore, the error reduction provided by the ensemble method reduces false alarms at decision boundaries that minimize missed detections. The proposed method is shown to improve the reliability of automated detection systems, which can avoid catastrophic scenarios on critical systems such as aircraft propellers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chao完成签到,获得积分10
刚刚
zl2966006233发布了新的文献求助10
刚刚
wenlei发布了新的文献求助10
1秒前
科研通AI2S应助冷酷的雅柔采纳,获得10
1秒前
Nature完成签到,获得积分10
2秒前
bkagyin应助天宇轩逸采纳,获得10
3秒前
3秒前
我是老大应助春夏秋冬采纳,获得10
3秒前
tingting1990发布了新的文献求助10
3秒前
酷波er应助科研的师弟采纳,获得10
3秒前
4秒前
4秒前
5秒前
苏苏完成签到,获得积分20
5秒前
奚斌完成签到,获得积分10
5秒前
6秒前
Bruce关注了科研通微信公众号
6秒前
缥缈凌萱发布了新的文献求助10
7秒前
小王小王完成签到,获得积分10
7秒前
孔乾发布了新的文献求助10
7秒前
flyxga870825发布了新的文献求助10
8秒前
8秒前
9秒前
transition发布了新的文献求助10
10秒前
薰硝壤应助六子采纳,获得10
10秒前
哥哥喜欢格格完成签到 ,获得积分10
10秒前
11秒前
FashionBoy应助齐齐巴宾采纳,获得10
11秒前
淡然的怜容完成签到,获得积分10
12秒前
12秒前
哭泣的采波完成签到,获得积分20
13秒前
Shirley应助kyJYbs采纳,获得10
13秒前
14秒前
14秒前
ZLY发布了新的文献求助20
14秒前
14秒前
15秒前
NexusExplorer应助超级BoBo采纳,获得10
15秒前
Ava应助辣味锅包肉采纳,获得10
15秒前
uuuuu应助顾北采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136000
求助须知:如何正确求助?哪些是违规求助? 2786769
关于积分的说明 7779614
捐赠科研通 2443019
什么是DOI,文献DOI怎么找? 1298798
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870