A Deep Ensemble Classifier for Surface Defect Detection in Aircraft Visual Inspection

分类器(UML) 人工智能 目视检查 计算机科学 模式识别(心理学) 计算机视觉
作者
Ivan Ren,Feraidoon Zahiri,Gregory P. Sutton,Thomas R. Kurfess,Christopher Saldaña
出处
期刊:Smart and sustainable manufacturing systems [ASTM International]
卷期号:4 (1): 81-94 被引量:2
标识
DOI:10.1520/ssms20200031
摘要

Abstract Visual inspection is critical in many maintenance, repair, and overhaul operations and is often the primary defense against premature failure caused by unresolved surface defects. The traditional inspection process is time-consuming and subjective, leading to research into automated systems using computer vision. Several prior methodologies have been developed using convolutional neural networks (CNNs) to classify surface defects; however, these methods often rely on singular models that are sensitive to poor model selection and training errors. Ensembling is a known technique used to minimize the errors of learning algorithms through combining the outputs of multiple models. This paper presents an automated inspection methodology utilizing stacked ensembles of CNNs to classify defects on aircraft surfaces. The proposed framework is evaluated with images obtained from a borescope inspection of aircraft propeller blade bores. It is shown that the ensemble method improves inspection accuracy over conventional single-model deep learning methods. Furthermore, the error reduction provided by the ensemble method reduces false alarms at decision boundaries that minimize missed detections. The proposed method is shown to improve the reliability of automated detection systems, which can avoid catastrophic scenarios on critical systems such as aircraft propellers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘雾发布了新的文献求助10
刚刚
1秒前
一一发布了新的文献求助20
1秒前
1秒前
Aixia完成签到 ,获得积分10
2秒前
葡萄糖完成签到,获得积分10
2秒前
哈哈完成签到,获得积分10
2秒前
在水一方应助CC采纳,获得10
2秒前
2秒前
余笙完成签到 ,获得积分10
3秒前
神勇的雅香应助科研混子采纳,获得10
3秒前
TT发布了新的文献求助10
4秒前
李顺完成签到,获得积分20
5秒前
ayin发布了新的文献求助10
5秒前
wait发布了新的文献求助10
5秒前
我是站长才怪应助xg采纳,获得10
6秒前
童话艺术佳完成签到,获得积分10
6秒前
稀罕你完成签到,获得积分10
6秒前
junzilan发布了新的文献求助10
6秒前
anny.white完成签到,获得积分10
7秒前
科研通AI5应助平常的毛豆采纳,获得10
9秒前
SciGPT应助paul采纳,获得10
12秒前
14秒前
英姑应助书生采纳,获得10
15秒前
科研钓鱼佬完成签到,获得积分10
16秒前
18秒前
petrichor应助C_Cppp采纳,获得10
18秒前
nan完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
勤恳的雨文完成签到,获得积分10
19秒前
木森ab发布了新的文献求助10
20秒前
paul完成签到,获得积分10
20秒前
小鞋完成签到,获得积分10
21秒前
开心青旋发布了新的文献求助10
21秒前
fztnh发布了新的文献求助10
21秒前
无名花生完成签到 ,获得积分10
21秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824