Adsorption and absorption of supercritical methane within shale kerogen slit

干酪根 吸附 吸收(声学) 甲烷 超临界流体 油页岩 化学 化学工程 材料科学 有机化学 复合材料 地质学 烃源岩 构造盆地 工程类 古生物学
作者
Fei Guo,Sen Wang,Qihong Feng,Xinyu Yao,Qingzhong Xue,Xiaofang Li
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:320: 114364-114364 被引量:25
标识
DOI:10.1016/j.molliq.2020.114364
摘要

Gas storage in shale primarily includes three forms: free gas in the fractures or macropores, adsorbed gas upon the kerogen surface, and absorbed gas in the kerogen matrix. However, current techniques cannot distinguish the adsorbed and absorbed gas, which restrict the understanding of gas storage and transport mechanisms through shale kerogen. On the basis of the grand canonical Monte Carlo (GCMC) simulations, we propose a technique to determine the independent adsorption and absorption isotherms of methane within slit-shaped shale kerogen under supercritical conditions. We observe that if the pore pressure is higher than ~3.5 MPa, the absorption amount is much smaller than that of adsorbed gas; however, at lower pressures, the absorption capacity is superior to that of the adsorption. Meanwhile, the ratio between adsorption and absorption quantities continuously increases with pressure. We probe the underlying mechanisms and study the effect of slit aperture, temperature, as well as moisture on gas adsorption and absorption capacity. Enlarging the slit aperture increases the adsorbed gas contents but shows only a negligible effect on the absorption capacity. Heating facilitates the escapement of gas molecules, thus leading to the inhibition of both adsorption and absorption capacities. Water molecules occupying the adsorption site on the slit surface impedes methane adsorption, but the absorption capacity within the kerogen matrix remains unchanged. This work elucidates the gas adsorption and absorption behavior in shale kerogen and sheds light on the storage and transport of hydrocarbons in nanoporous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容海完成签到 ,获得积分10
刚刚
2秒前
秋殤完成签到 ,获得积分10
3秒前
renshi647发布了新的文献求助10
3秒前
科研通AI2S应助rcf采纳,获得10
4秒前
4秒前
Baron发布了新的文献求助10
4秒前
4秒前
丘比特应助丙烯酸树脂采纳,获得10
5秒前
风灵无畏完成签到,获得积分10
5秒前
5秒前
南浔完成签到,获得积分10
6秒前
7秒前
1111完成签到,获得积分10
8秒前
ddx关闭了ddx文献求助
8秒前
风灵无畏发布了新的文献求助10
9秒前
李卓霖发布了新的文献求助10
9秒前
11秒前
包容夕阳完成签到,获得积分10
12秒前
标致的芷文关注了科研通微信公众号
13秒前
13秒前
13秒前
852应助Anran采纳,获得10
14秒前
14秒前
Baron完成签到,获得积分10
16秒前
搜集达人应助寂寞的丹烟采纳,获得10
16秒前
思源应助miss采纳,获得10
17秒前
庄落发布了新的文献求助10
17秒前
17秒前
17秒前
orixero应助灵泽采纳,获得10
18秒前
18秒前
sonjsnd完成签到,获得积分10
18秒前
ys1111xiao完成签到 ,获得积分10
19秒前
无花果应助wanghao婷采纳,获得30
19秒前
web发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
激昂的柚子完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424645
求助须知:如何正确求助?哪些是违规求助? 4538996
关于积分的说明 14164586
捐赠科研通 4455962
什么是DOI,文献DOI怎么找? 2444024
邀请新用户注册赠送积分活动 1435084
关于科研通互助平台的介绍 1412452