A Review of 1D Convolutional Neural Networks toward Unknown Substance Identification in Portable Raman Spectrometer

计算机科学 拉曼光谱 分光计 卷积神经网络 人工智能 鉴定(生物学) 领域(数学) 深度学习 移动设备 模式识别(心理学) 光学 数学 物理 生物 纯数学 操作系统 植物
作者
M. Hamed Mozaffari,Li‐Lin Tay
出处
期刊:Cornell University - arXiv 被引量:22
标识
DOI:10.48550/arxiv.2006.10575
摘要

Raman spectroscopy is a powerful analytical tool with applications ranging from quality control to cutting edge biomedical research. One particular area which has seen tremendous advances in the past decade is the development of powerful handheld Raman spectrometers. They have been adopted widely by first responders and law enforcement agencies for the field analysis of unknown substances. Field detection and identification of unknown substances with Raman spectroscopy rely heavily on the spectral matching capability of the devices on hand. Conventional spectral matching algorithms (such as correlation, dot product, etc.) have been used in identifying unknown Raman spectrum by comparing the unknown to a large reference database. This is typically achieved through brute-force summation of pixel-by-pixel differences between the reference and the unknown spectrum. Conventional algorithms have noticeable drawbacks. For example, they tend to work well with identifying pure compounds but less so for mixture compounds. For instance, limited reference spectra inaccessible databases with a large number of classes relative to the number of samples have been a setback for the widespread usage of Raman spectroscopy for field analysis applications. State-of-the-art deep learning methods (specifically convolutional neural networks CNNs), as an alternative approach, presents a number of advantages over conventional spectral comparison algorism. With optimization, they are ideal to be deployed in handheld spectrometers for field detection of unknown substances. In this study, we present a comprehensive survey in the use of one-dimensional CNNs for Raman spectrum identification. Specifically, we highlight the use of this powerful deep learning technique for handheld Raman spectrometers taking into consideration the potential limit in power consumption and computation ability of handheld systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xzy998应助念65采纳,获得10
1秒前
姜岛完成签到,获得积分10
1秒前
会思考的狐狸完成签到 ,获得积分10
1秒前
1秒前
讨厌科研完成签到,获得积分10
2秒前
3秒前
微笑襄完成签到 ,获得积分10
4秒前
领导范儿应助kiki采纳,获得10
4秒前
传奇3应助水木年华采纳,获得10
4秒前
含糊的立轩完成签到,获得积分10
5秒前
marvelM完成签到,获得积分10
6秒前
6秒前
6秒前
球球发布了新的文献求助10
6秒前
6秒前
开心夏云完成签到,获得积分10
7秒前
7秒前
Junlei完成签到,获得积分10
7秒前
8秒前
万默发布了新的文献求助10
8秒前
菘蓝泽蓼完成签到,获得积分10
9秒前
9秒前
simon_chou完成签到,获得积分10
9秒前
TracyGuo发布了新的文献求助10
9秒前
烟花应助鱼儿会飞采纳,获得10
10秒前
CipherSage应助芋泥泥泥采纳,获得10
11秒前
Junjie发布了新的文献求助10
11秒前
ss发布了新的文献求助10
12秒前
huyz发布了新的文献求助10
12秒前
CodeCraft应助橘子果酱采纳,获得10
12秒前
12秒前
SSY发布了新的文献求助10
13秒前
13秒前
13秒前
布拉德皮特厚完成签到,获得积分10
13秒前
ZHX完成签到,获得积分10
14秒前
晨心完成签到,获得积分10
14秒前
上好佳完成签到,获得积分10
14秒前
多情方盒完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074