A Review of 1D Convolutional Neural Networks toward Unknown Substance Identification in Portable Raman Spectrometer

计算机科学 拉曼光谱 分光计 卷积神经网络 人工智能 鉴定(生物学) 领域(数学) 深度学习 移动设备 模式识别(心理学) 光学 数学 物理 生物 操作系统 植物 纯数学
作者
M. Hamed Mozaffari,Li‐Lin Tay
出处
期刊:Cornell University - arXiv 被引量:22
标识
DOI:10.48550/arxiv.2006.10575
摘要

Raman spectroscopy is a powerful analytical tool with applications ranging from quality control to cutting edge biomedical research. One particular area which has seen tremendous advances in the past decade is the development of powerful handheld Raman spectrometers. They have been adopted widely by first responders and law enforcement agencies for the field analysis of unknown substances. Field detection and identification of unknown substances with Raman spectroscopy rely heavily on the spectral matching capability of the devices on hand. Conventional spectral matching algorithms (such as correlation, dot product, etc.) have been used in identifying unknown Raman spectrum by comparing the unknown to a large reference database. This is typically achieved through brute-force summation of pixel-by-pixel differences between the reference and the unknown spectrum. Conventional algorithms have noticeable drawbacks. For example, they tend to work well with identifying pure compounds but less so for mixture compounds. For instance, limited reference spectra inaccessible databases with a large number of classes relative to the number of samples have been a setback for the widespread usage of Raman spectroscopy for field analysis applications. State-of-the-art deep learning methods (specifically convolutional neural networks CNNs), as an alternative approach, presents a number of advantages over conventional spectral comparison algorism. With optimization, they are ideal to be deployed in handheld spectrometers for field detection of unknown substances. In this study, we present a comprehensive survey in the use of one-dimensional CNNs for Raman spectrum identification. Specifically, we highlight the use of this powerful deep learning technique for handheld Raman spectrometers taking into consideration the potential limit in power consumption and computation ability of handheld systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈发布了新的文献求助10
刚刚
打打应助时尚的蚂蚁采纳,获得10
1秒前
贾文斌完成签到,获得积分10
1秒前
chinning发布了新的文献求助10
1秒前
完美世界应助wangn采纳,获得10
2秒前
Mid完成签到,获得积分20
2秒前
共享精神应助Morgenstern_ZH采纳,获得10
2秒前
2秒前
2秒前
搞怪画笔完成签到 ,获得积分10
2秒前
皇城有饭局完成签到,获得积分10
2秒前
lvanlvan完成签到,获得积分10
2秒前
哲999发布了新的文献求助10
3秒前
Jadie完成签到,获得积分10
3秒前
3秒前
morlison发布了新的文献求助10
3秒前
3秒前
无花果应助佳佳采纳,获得10
3秒前
无花果应助nn采纳,获得10
4秒前
置默完成签到,获得积分10
4秒前
gww完成签到,获得积分20
5秒前
zhmyjk发布了新的文献求助60
5秒前
MADKAI发布了新的文献求助20
5秒前
5秒前
隐形曼青应助gaos采纳,获得10
5秒前
侦察兵发布了新的文献求助10
6秒前
JamesPei应助科研小小小白采纳,获得10
6秒前
6秒前
yaqin@9909完成签到,获得积分10
6秒前
嗨JL完成签到,获得积分10
6秒前
帅玉玉发布了新的文献求助10
6秒前
鳗鱼冰薇完成签到 ,获得积分10
8秒前
tanjianxin发布了新的文献求助10
8秒前
9秒前
霸王龙完成签到,获得积分10
9秒前
9秒前
9秒前
细心映寒发布了新的文献求助10
9秒前
哈哈发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759