A Review of 1D Convolutional Neural Networks toward Unknown Substance Identification in Portable Raman Spectrometer

计算机科学 拉曼光谱 分光计 卷积神经网络 人工智能 鉴定(生物学) 领域(数学) 深度学习 移动设备 模式识别(心理学) 光学 数学 物理 生物 操作系统 植物 纯数学
作者
M. Hamed Mozaffari,Li‐Lin Tay
出处
期刊:Cornell University - arXiv 被引量:22
标识
DOI:10.48550/arxiv.2006.10575
摘要

Raman spectroscopy is a powerful analytical tool with applications ranging from quality control to cutting edge biomedical research. One particular area which has seen tremendous advances in the past decade is the development of powerful handheld Raman spectrometers. They have been adopted widely by first responders and law enforcement agencies for the field analysis of unknown substances. Field detection and identification of unknown substances with Raman spectroscopy rely heavily on the spectral matching capability of the devices on hand. Conventional spectral matching algorithms (such as correlation, dot product, etc.) have been used in identifying unknown Raman spectrum by comparing the unknown to a large reference database. This is typically achieved through brute-force summation of pixel-by-pixel differences between the reference and the unknown spectrum. Conventional algorithms have noticeable drawbacks. For example, they tend to work well with identifying pure compounds but less so for mixture compounds. For instance, limited reference spectra inaccessible databases with a large number of classes relative to the number of samples have been a setback for the widespread usage of Raman spectroscopy for field analysis applications. State-of-the-art deep learning methods (specifically convolutional neural networks CNNs), as an alternative approach, presents a number of advantages over conventional spectral comparison algorism. With optimization, they are ideal to be deployed in handheld spectrometers for field detection of unknown substances. In this study, we present a comprehensive survey in the use of one-dimensional CNNs for Raman spectrum identification. Specifically, we highlight the use of this powerful deep learning technique for handheld Raman spectrometers taking into consideration the potential limit in power consumption and computation ability of handheld systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苍穹完成签到,获得积分10
刚刚
刘一刀完成签到,获得积分10
1秒前
tang完成签到,获得积分10
1秒前
菜鸡发布了新的文献求助10
2秒前
3秒前
longchb发布了新的文献求助10
3秒前
Lucky完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
mengdewen完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
8秒前
8秒前
VICI完成签到,获得积分10
8秒前
9秒前
9秒前
慕青应助王先生采纳,获得10
9秒前
zhangyue7777发布了新的文献求助50
9秒前
菜鸡完成签到,获得积分10
9秒前
桐桐应助兽行灵者采纳,获得10
10秒前
10秒前
Hello应助半芹采纳,获得10
10秒前
哈哈哈发布了新的文献求助30
10秒前
美满的水杯完成签到,获得积分10
10秒前
鹿鹿鹿完成签到,获得积分10
11秒前
11秒前
VICI发布了新的文献求助10
11秒前
medhulang发布了新的文献求助10
11秒前
12秒前
小马甲应助李硕采纳,获得10
12秒前
李白白应助安玖采纳,获得10
12秒前
ljs发布了新的文献求助10
13秒前
lis57发布了新的文献求助10
13秒前
14秒前
田様应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124336
求助须知:如何正确求助?哪些是违规求助? 2774637
关于积分的说明 7723368
捐赠科研通 2430117
什么是DOI,文献DOI怎么找? 1290937
科研通“疑难数据库(出版商)”最低求助积分说明 621972
版权声明 600297