生物
转录组
肌肉疾病
骨骼肌
心肌细胞
电池类型
干细胞
细胞
肌发生
计算生物学
细胞生物学
祖细胞
基因表达
基因
遗传学
解剖
医学
内科学
作者
Andrea J. De Micheli,Jason A. Spector,Olivier Elemento,Benjamin D. Cosgrove
标识
DOI:10.1186/s13395-020-00236-3
摘要
Abstract Single-cell RNA-sequencing (scRNA-seq) facilitates the unbiased reconstruction of multicellular tissue systems in health and disease. Here, we present a curated scRNA-seq dataset of human muscle samples from 10 adult donors with diverse anatomical locations. We integrated ~ 22,000 single-cell transcriptomes using Scanorama to account for technical and biological variation and resolved 16 distinct populations of muscle-resident cells using unsupervised clustering of the data compendium. These cell populations included muscle stem/progenitor cells (MuSCs), which bifurcated into discrete “quiescent” and “early-activated” MuSC subpopulations. Differential expression analysis identified transcriptional profiles altered in the activated MuSCs including genes associated with aging, obesity, diabetes, and impaired muscle regeneration, as well as long non-coding RNAs previously undescribed in human myogenic cells. Further, we modeled ligand-receptor cell-communication interactions and observed enrichment of the TWEAK-FN14 pathway in activated MuSCs, a characteristic signature of muscle wasting diseases. In contrast, the quiescent MuSCs have enhanced expression of the EGFR receptor, a recognized human MuSC marker. This work provides a new benchmark reference resource to examine human muscle tissue heterogeneity and identify potential targets in MuSC diversity and dysregulation in disease contexts.
科研通智能强力驱动
Strongly Powered by AbleSci AI